Chevron Left
Back to Data Analysis with Python

Learner Reviews & Feedback for Data Analysis with Python by IBM

4.7
stars
14,237 ratings
2,110 reviews

About the Course

Learn how to analyze data using Python. This course will take you from the basics of Python to exploring many different types of data. You will learn how to prepare data for analysis, perform simple statistical analysis, create meaningful data visualizations, predict future trends from data, and more! Topics covered: 1) Importing Datasets 2) Cleaning the Data 3) Data frame manipulation 4) Summarizing the Data 5) Building machine learning Regression models 6) Building data pipelines Data Analysis with Python will be delivered through lecture, lab, and assignments. It includes following parts: Data Analysis libraries: will learn to use Pandas, Numpy and Scipy libraries to work with a sample dataset. We will introduce you to pandas, an open-source library, and we will use it to load, manipulate, analyze, and visualize cool datasets. Then we will introduce you to another open-source library, scikit-learn, and we will use some of its machine learning algorithms to build smart models and make cool predictions. If you choose to take this course and earn the Coursera course certificate, you will also earn an IBM digital badge. LIMITED TIME OFFER: Subscription is only $39 USD per month for access to graded materials and a certificate....

Top reviews

SC
May 5, 2020

I started this course without any knowledge on Data Analysis with Python, and by the end of the course I was able to understand the basics of Data Analysis, usage of different libraries and functions.

RP
Apr 19, 2019

perfect for beginner level. all the concepts with code and parameter wise have been explained excellently. overall best course in making anyone eager to learn from basics to handle advances with ease.

Filter by:

1901 - 1925 of 2,103 Reviews for Data Analysis with Python

By Rakshita S

Jul 26, 2020

The reason I am giving a three to this course because compared to rest it was a bit fast-paced. Also, I feel we need a prerequisite of statistics before starting this course which was not mentioned anywhere.

Guess it is time for a lot of practice. Wish there were more assignments as well.

By Fernando M M E

Oct 23, 2021

I am doing this course as part of the IBM Data Analyst Certificate and even it was the 7th course I take I don't feel it was well explained. The videos pass very fast and the explanations are insufficient to understand what happen in the labs. I think there is place for improvement.

By Sisir K

Feb 15, 2019

Highly technical and complex in nature. Difficult for people just starting out with data science. The hands-on labs are more useful than the videos themselves. The quizzes in between videos felt a bit too easy and mostly comprised of examples (as questions) in the videos themselves.

By Raghav N

Sep 14, 2018

This course is definitely very helpful to people who are passionate about Data science and have basic to intermediate understanding of Python but this course can be much better if it includes coding assignments rather than quiz submission. It was a great experience.

By Roberto B

Jul 10, 2019

I'm not convinced that this is a great way to learn, I just feel there needs to be a better way of learning this than the approach this course takes, I kind of learned the python commands but I'm not sure I understand how to apply them in the real world. We'll see

By Toan L T

Oct 23, 2018

Decent videos on Data Analysis techniques.

But the labs are poorly constructed: typos, inconstant question and solution, un-commented code and under-explained lab result.

It's a shame since the labs in other courses in this series are very high-quality.

By Raj K

Jul 6, 2018

It would be great course for beginner to have idea about different steps involve in data science job. I would recommend to go with this course. I just took 3 days to complete this course and you can do in 2 days also. Depending on your speed.

By Damian D

Feb 13, 2019

There are some mistakes in the course (wrong transcryptions, missing cells in LAB).

The material is quite difficult and more explanation / exercises would be needed.

There is no assignment at the end of the course which I consider as minus.

By Luciano P

May 2, 2021

Good topics, but video instructions not clear enought. I had to go search on Internet for the topics. Sorry.

Maybe they were too simplified for videos. The subjects needed more exploration.

Anyway, it was a good starting point.

By Filipe S M G

Aug 24, 2019

Good introductory course on Data Analysus with Python. Since the course is short, the functions and concepts are explained very quickly. There are also many mistakes in the slides, notebooks and even in the final assignment.

By Benoit P D

May 4, 2019

The content of the course is very interesting. There are lots of typos in the lab workbooks though. Additionally, i found having to use Watson Studio for the assignment / labs as opposed to plain Jupyter a little annoying.

By CHEW K C

Mar 14, 2021

it will be better if you can illustrate how to solve the problem step by step and explain what is the parameters that you put inside the function. Some videos are great but some videos seems a bit rush.

By Sadanand U

Apr 9, 2019

It would be great if we go in a little more details of when to use which metrics for evaluation. Instead of running through a bunch of concepts you could have spent a little more time in each of them.

By Joseph M

Feb 21, 2019

There were serious problems with this course, not in the instructional material but in the execution. There were multiple typos in the code. The especially grievous ones being in the dictionary names.

By Tejas M J

May 4, 2021

Few mistakes in the questions made for this course. Also, more questions for quizzes are needed to test the learner's abilities better. Slightly harder coding assignments would also be a great idea.

By Michael L

Jan 1, 2021

Ran into some roadblocks during the peer assignment. It would have been nice to have had access to someone to discuss the roadblocks and assist me with understanding how I went wrong.

By Deren T

Jan 7, 2019

This is the 6th course of the specialization and I gave 5 stars to the previous courses. But this course have many typos in videos and codes. It makes harder to understand some points.

By Kristen P

Aug 18, 2019

The work in this course was incredibly interesting. However, there are many errors and the forums went for over a week without response to questions...It seems hastily put together.

By L V P K M

May 14, 2020

Videos are very fast and dont go into details. Assignment is very easy, it could have been more challenging which can test and make learner to think using several concepts learned.

By Ivan L

Apr 28, 2019

Typos are very unprofessional and spoil impressions of the course. Tests and labs are super-easy and do not make you think, and you only need to repeat commands from the lectures.

By Vladimir K

Feb 24, 2020

So many errors in materials. It's unacceptable for course of such level. Even though people mentioned these errors in discussion forumns noone seems to bother about correct em.

By Naveen B

Jul 12, 2019

Some of the codes shown in the videos had minor errors. Also, a bit more explanation for function (in statistics terms) would have helped in having a better understanding.

By Sruthi A

Jan 20, 2021

This course covered all the topics and overall it's a good one. I wish there were more examples, as it was hard to understand the details in depth with just one example .

By Marta I

Aug 23, 2020

This is a good course for beginners with Python. The content is explained in a very direct and comprehensible way, but more programming exercises and tasks are required.

By Ying W O

Sep 27, 2019

There are lots of typos in the labs and assignments, which can be frustrating. I expect better quality from IBM. Content is great and easy to understand nevertheless.