About this Course

85,135 recent views
Shareable Certificate
Earn a Certificate upon completion
100% online
Start instantly and learn at your own schedule.
Flexible deadlines
Reset deadlines in accordance to your schedule.
Advanced Level
Approx. 13 hours to complete
English
Subtitles: English, Korean
Shareable Certificate
Earn a Certificate upon completion
100% online
Start instantly and learn at your own schedule.
Flexible deadlines
Reset deadlines in accordance to your schedule.
Advanced Level
Approx. 13 hours to complete
English
Subtitles: English, Korean

Offered by

National Research University Higher School of Economics logo

National Research University Higher School of Economics

Syllabus - What you will learn from this course

Content RatingThumbs Up84%(1,094 ratings)Info
Week
1

Week 1

3 hours to complete

Introduction to image processing and computer vision

3 hours to complete
9 videos (Total 56 min), 1 reading, 2 quizzes
9 videos
Short introduction to computer vision4m
Digital images3m
Structure of human eye and vision6m
Color models15m
Image processing goals and tasks2m
Contrast and brightness correction5m
Image convolution7m
Edge detection8m
1 reading
About the University10m
1 practice exercise
Basic image processing30m
Week
2

Week 2

3 hours to complete

Convolutional features for visual recognition

3 hours to complete
12 videos (Total 91 min)
12 videos
AlexNet, VGG and Inception architectures11m
ResNet and beyond10m
Fine-grained image recognition5m
Detection and classification of facial attributes6m
Content-based image retrieval7m
Computing semantic image embeddings using convolutional neural networks8m
Employing indexing structures for efficient retrieval of semantic neighbors9m
Face verification6m
The re-identification problem in computer vision5m
Facial keypoints regression6m
CNN for keypoints regression5m
1 practice exercise
Convolutional features for visual recognition30m
Week
3

Week 3

2 hours to complete

Object detection

2 hours to complete
13 videos (Total 46 min)
13 videos
Sliding windows3m
HOG-based detector2m
Detector training3m
Viola-Jones face detector5m
Attentional cascades and neural networks3m
Region-based convolutional neural network3m
From R-CNN to Fast R-CNN5m
Faster R-CNN4m
Region-based fully-convolutional network2m
Single shot detectors3m
Speed vs. accuracy tradeoff1m
Fun with pedestrian detectors1m
1 practice exercise
Object Detection30m
Week
4

Week 4

3 hours to complete

Object tracking and action recognition

3 hours to complete
11 videos (Total 74 min)
11 videos
Optical flow5m
Deep learning in optical flow estimation5m
Visual object tracking5m
Examples of visual object tracking methods13m
Multiple object tracking5m
Examples of multiple object tracking methods8m
Introduction to action recognition6m
Action classification7m
Action classification with convolutional neural networks5m
Action localization6m
1 practice exercise
Video Analysis30m

Reviews

TOP REVIEWS FROM DEEP LEARNING IN COMPUTER VISION

View all reviews

About the Advanced Machine Learning Specialization

This specialization gives an introduction to deep learning, reinforcement learning, natural language understanding, computer vision and Bayesian methods. Top Kaggle machine learning practitioners and CERN scientists will share their experience of solving real-world problems and help you to fill the gaps between theory and practice. Upon completion of 7 courses you will be able to apply modern machine learning methods in enterprise and understand the caveats of real-world data and settings....
Advanced Machine Learning

Frequently Asked Questions

  • Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:

    • The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.
    • The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
  • When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.

  • If you subscribed, you get a 7-day free trial during which you can cancel at no penalty. After that, we don’t give refunds, but you can cancel your subscription at any time. See our full refund policy.

  • Yes, Coursera provides financial aid to learners who cannot afford the fee. Apply for it by clicking on the Financial Aid link beneath the "Enroll" button on the left. You'll be prompted to complete an application and will be notified if you are approved. You'll need to complete this step for each course in the Specialization, including the Capstone Project. Learn more.

  • This Course doesn't carry university credit, but some universities may choose to accept Course Certificates for credit. Check with your institution to learn more. Online Degrees and Mastertrack™ Certificates on Coursera provide the opportunity to earn university credit.

More questions? Visit the Learner Help Center.