This course is an introduction into formal concept analysis (FCA), a mathematical theory oriented at applications in knowledge representation, knowledge acquisition, data analysis and visualization. It provides tools for understanding the data by representing it as a hierarchy of concepts or, more exactly, a concept lattice. FCA can help in processing a wide class of data types providing a framework in which various data analysis and knowledge acquisition techniques can be formulated. In this course, we focus on some of these techniques, as well as cover the theoretical foundations and algorithmic issues of FCA.

## Introduction to Formal Concept Analysis

National Research University Higher School of Economics## About this Course

### Learner Career Outcomes

## 25%

### Learner Career Outcomes

## 25%

### Offered by

#### National Research University Higher School of Economics

National Research University - Higher School of Economics (HSE) is one of the top research universities in Russia. Established in 1992 to promote new research and teaching in economics and related disciplines, it now offers programs at all levels of university education across an extraordinary range of fields of study including business, sociology, cultural studies, philosophy, political science, international relations, law, Asian studies, media and communicamathematics, engineering, and more.

## Syllabus - What you will learn from this course

**5 hours to complete**

## Formal concept analysis in a nutshell

This week we will learn the basic notions of formal concept analysis (FCA). We'll talk about some of its typical applications, such as conceptual clustering and search for implicational dependencies in data. We'll see a few examples of concept lattices and learn how to interpret them. The simplest data structure in formal concept analysis is the formal context. It is used to describe objects in terms of attributes they have. Derivation operators in a formal context link together object and attribute subsets; they are used to define formal concepts. They also give rise to closure operators, and we'll talk about what these are, too. We'll have a look at software called Concept Explorer, which is good for basic processing of formal contexts. We'll also talk a little bit about many-valued contexts, where attributes may have many values. Conceptual scaling is used to transform many-valued contexts into "standard", one-valued, formal contexts.

**5 hours to complete**

**15 videos**

**4 readings**

**2 practice exercises**

**4 hours to complete**

## Concept lattices and their line diagrams

This week we'll talk about some mathematical properties of concepts. We'll define a partial order on formal concepts, that of "being less general". Ordered in this way, the concepts of a formal concept constitute a special mathematical structure, a complete lattice. We'll learn what these are, and we'll see, through the basic theorem on concept lattices, that any complete lattice can, in a certain sense, be modelled by a formal context. We'll also discuss how a formal context can be simplified without loosing the structure of its concept lattice.

**4 hours to complete**

**8 videos**

**3 practice exercises**

**5 hours to complete**

## Constructing concept lattices

We will consider a few algorithms that build the concept lattice of a formal context: a couple of naive approaches, which are easy to use if one wants to build the concept lattice of a small context; a more sophisticated approach, which enumerates concepts in a specific order; and an incremental strategy, which can be used to update the concept lattice when a new object is added to the context. We will also give a formal definition of implications, and we'll see how an implication can logically follow from a set of other implications.

**5 hours to complete**

**13 videos**

**1 reading**

**3 practice exercises**

**4 hours to complete**

## Implications

This week we'll continue talking about implications. We'll see that implication sets can be redundant, and we'll learn to summarise all valid implications of a formal context by its canonical (Duquenne–Guigues) basis. We'll study one concrete algorithm that computes the canonical basis, which turns out to be a modification of the Next Closure algorithm from the previous week. We'll also talk about what is known in database theory as functional dependencies, and we'll show how they are related to implications.

**4 hours to complete**

**9 videos**

**1 reading**

**3 practice exercises**

## Reviews

### TOP REVIEWS FROM INTRODUCTION TO FORMAL CONCEPT ANALYSIS

It is a very nice course, I fully recommend it. It is very good organized and explained. The task some of them are challenge.

Was quite hard. Instructor was very helpful. Instructors book helped a lot.

## Frequently Asked Questions

When will I have access to the lectures and assignments?

What will I get if I purchase the Certificate?

Is financial aid available?

Will I earn university credit for completing the Course?

More questions? Visit the Learner Help Center.