This course is for anyone passionate in learning how a hardware component can be adapted at runtime to better respond to users/environment needs. This adaptation can be provided by the designers, or it can be an embedded characteristic of the system itself. These runtime adaptable systems will be implemented by using FPGA technologies.
Within this course we are going to provide a basic understanding on how the FPGAs are working and of the rationale behind the choice of them to implement a desired system.
This course aims to teach everyone the basics of FPGA-based reconfigurable computing systems. We cover the basics of how to decide whether or not to use an FPGA and, if this technology will be proven to be the right choice, how to program it.
This is an introductory course meant to guide you through the FPGA world to make you more conscious on the reasons why you may be willing to work with them and in trying to provide you the sense of the work you have to do to be able to gain the advantages you are looking for by using these technologies.
The course has no prerequisites and avoids all but the simplest mathematics and it presents technical topics by using analogizes to help also a student without a technical background to get at least a basic understanding on how an FPGA works.
One of the main objectives of this course is to try to democratize the understanding and the access to FPGAs technologies. FPGAs are a terrific example of a powerful technologies that can be used in different domains. Being able to bring this technologies to domain experts and showing them how they can improve their research because of FPGAs, can be seen as the ultimate objective of this course. Once a student completes this course, they will be ready to take more advanced FPGA courses.
From the lesson
Towards Partial Dynamic Reconfiguration and Complex FPGA-based systems
The reconfiguration capabilities of FPGAs give the designers extended flexibility in terms of hardware maintainability. FPGAs can change the hardware functionalities mapped on them by taking the application offline, downloading a new configuration on the FPGA (and possibly new software for the processor, if any) and rebooting the system. Reconfiguration in this case is a process independent of the execution of the application. A different approach is the one that considers reconfiguration of the FPGA as part of the application itself, giving it the capability of adapting the hardware configured on the chip resources according to the needs of a particular situation during the execution time. In this case we are referring to this reconfiguration as dynamic reconfiguration and the reconfiguration process is seen as part of the application execution, and not as a stage prior to it. This module illustrates a particular technique, which is extending the previous two, that has been viable for most recent FPGA devices, Partial Dynamic Reconfiguration. To fully understand what this technique is, the concepts of reconfigurable computing, static and dynamic reconfiguration, and the taxonomy of dynamic reconfiguration itself must be analyzed. In this way partial dynamic reconfiguration can be correctly placed in the set of system development techniques that it is possible to implement on a modern FPGA chip.