About this Course
204,276 recent views

100% online

Start instantly and learn at your own schedule.

Flexible deadlines

Reset deadlines in accordance to your schedule.

Beginner Level

Approx. 28 hours to complete

Suggested: 8 hours/week...

Russian

Subtitles: Russian

Skills you will gain

ScipyStatisticsPython ProgrammingNumpy

100% online

Start instantly and learn at your own schedule.

Flexible deadlines

Reset deadlines in accordance to your schedule.

Beginner Level

Approx. 28 hours to complete

Suggested: 8 hours/week...

Russian

Subtitles: Russian

Syllabus - What you will learn from this course

Week
1
8 hours to complete

Введение

Добро пожаловать! На этой неделе мы начнём осваивать язык Python — один из главных инструментов специалиста в науке о данных, и вспомним кое-что о производных, которые активно используются при настройке моделей машинного обучения.

...
19 videos (Total 115 min), 12 readings, 7 quizzes
19 videos
Как устроена специализация и зачем ее проходить3m
Как устроен этот курс и в чем его главная особенность1m
МФТИ1m
Что такое Python и почему мы выбрали именно его6m
Как установить Анаконду. Windows3m
Как установить Анаконду. Linux4m
Как установить Анаконду. Mac3m
Что такое ноутбуки и как ими пользоваться10m
Типы данных16m
Циклы, функции, генераторы, list comprehension13m
Чтение данных из файлов11m
Запись файлов, изменение файлов8m
Функции и их свойства6m
Предел и производная4m
Геометрический смысл производной2m
Производная сложной функции2m
Задача нахождения экстремума3m
Вторая производная и выпуклость5m
12 readings
Формат специализации и получение сертификата2m
МФТИ10m
Немного о Yandex10m
Python FAQ10m
Forum&Chat10m
Знакомство с IPython Notebook10m
Конспект30m
Типы данных (ipython notebook)10m
Чтение данных из файлов (ipython notebook)10m
Запись файлов, изменение файлов (ipython notebook)10m
Конспект30m
Конспект10m
6 practice exercises
Работа с IPython Notebook10m
Знакомство с Python10m
Работа с файлами в Python10m
Синтаксис Python10m
Функции и экстремумы10m
Производная и её применения10m
Week
2
8 hours to complete

Библиотеки Python и линейная алгебра

На этой неделе мы познакомимся с Python-библиотеками, содержащими большое количество полезных инструментов: от быстрых операций с многомерными массивами до визуализации и реализации различных математических методов. Кроме того, мы освоим линейную алгебру — основной математический аппарат для работы с данными: в большинстве задач данные можно представить в виде векторов или матриц.

...
14 videos (Total 97 min), 8 readings, 10 quizzes
14 videos
Pandas. Индексация и селекция13m
Первое знакомство NumPy, SciPy и Matplotlib16m
Решение оптимизационных задач в SciPy4m
Знакомство с линейной алгеброй5m
Векторные пространства3m
Линейная независимость6m
Операции в векторных пространствах6m
Зачем нужны матрицы?5m
Матричные операции7m
Ранг и определитель5m
Системы линейных уравнений4m
Особые виды матриц4m
Собственные числа и векторы3m
8 readings
Pandas. DataFrame (ipython notebook)10m
Pandas. Индексация и селекция (ipython notebook)10m
Первое знакомство с Numpy, Scipy и Matplotlib (ipython notebook)10m
Оптимизация в Scipy (ipython notebook)10m
NumPy: векторы и операции над ними10m
Конспект30m
NumPy: матрицы и операции над ними10m
Конспект30m
9 practice exercises
Pandas10m
Numpy10m
Pandas, Numpy, Scipy, Matplotlib10m
Базовые понятия линейной алгебры10m
Линейная независимость и размерность10m
Векторные пространства и NumPy10m
Что можно делать с матрицами?10m
Разрешимость систем линейных уравнений и ранги10m
Матрицы и NumPy10m
Week
3
6 hours to complete

Оптимизация и матричные разложения

На этой неделе мы научимся с помощью методов оптимизации находить наилучшие значения параметров системы, чтобы минимизировать затраты или максимизировать точность предсказаний, а также познакомимся с матричными разложениями, которые используются при построении регрессионных моделей, для уменьшения размерности данных, в рекомендательных системах и в анализе текстов.

...
12 videos (Total 47 min), 3 readings, 7 quizzes
12 videos
Применение градиента3m
Производная по направлению2m
Касательная плоскость и линейное приближение2m
Направление наискорейшего роста2m
Оптимизация негладких функций4m
Метод имитации отжига4m
Генетические алгоритмы и дифференциальная эволюция4m
Нелдер-Мид3m
Разложения матриц в произведение, сингулярное разложение3m
Приближение матрицей меньшего ранга5m
Связь сингулярного разложения и приближения матрицей меньшего ранга6m
3 readings
Конспект30m
Конспект30m
Конспект30m
6 practice exercises
Частные производные10m
Градиент и его применения10m
Повторение: гладкость и градиентный спуск10m
Методы оптимизации в негладких задачах10m
Повторение линейной алгебры10m
Матричные разложения10m
Week
4
6 hours to complete

Случайность

На этой неделе мы освоим базовые концепции теории вероятностей и статистики, которые необходимы для понимания механизма работы практически всех методов анализа данных. Мы разберёмся с самыми популярными распределениями, узнаем, какие явления ими описываются и какими статистиками оцениваются их параметры, а также научимся строить доверительные интервалы.

...
11 videos (Total 59 min), 7 readings, 7 quizzes
11 videos
Свойства вероятности3m
Условная вероятность2m
Дискретные случайные величины4m
Непрерывные случайные величины7m
Оценка распределения по выборке6m
Важные характеристики распределений6m
Важные статистики5m
Центральная предельная теорема5m
Доверительные интервалы6m
Бонусное видео6m
7 readings
Работа со случайными величинами (ipython notebook)10m
Конспект30m
Оценка распределения по выборке (ipython notebook)10m
Конспект30m
Материалы к бонусному видео10m
Список литературы10m
Финальные титры10m
6 practice exercises
Вероятность10m
Случайные величины10m
Вероятность и случайные величины20m
Распределения, параметры и оценки10m
ЦПТ и доверительные интервалы10m
Статистики20m
4.8
670 ReviewsChevron Right

41%

started a new career after completing these courses

43%

got a tangible career benefit from this course

24%

got a pay increase or promotion

Top reviews from Математика и Python для анализа данных

By GDAug 9th 2018

Лучший вводный курс, который я видел. Есть мелкие огрехи в изложении математической части, но это ерунда по сравнению с четкостью и полнотой изложения программистской части и обилием примеров. Спасибо

By KAFeb 16th 2016

Прошел много курсов по Data Science, этот курс не разочаровал. Подается в лучших западных традициях. Неформально объясняется материал, много примеров. Надеюсь, и дальше специализация не подкачает.

About Moscow Institute of Physics and Technology

Московский физико-технический институт (Физтех) является одним из ведущих вузов страны и входит в основные рейтинги лучших университетов мира. Институт обладает не только богатой историей – основателями и профессорами института были Нобелевские лауреаты Пётр Капица, Лев Ландау и Николай Семенов – но и большой научно-исследовательской базой. Основой образования в МФТИ является уникальная «система Физтеха», сформулированная Петром Капицей: кропотливый отбор одаренных и склонных к творческой работе абитуриентов; участие в обучении ведущих научных работников; индивидуальный подход к отдельным студентам с целью развития их творческих задатков; воспитание с первых шагов в атмосфере технических исследований и конструктивного творчества с использованием потенциала лучших лабораторий страны. Среди выпускников МФТИ — нобелевские лауреаты Андрей Гейм и Константин Новоселов, основатель компании ABBYY Давид Ян, один из авторов архитектурных принципов построения вычислительных комплексов Борис Бабаян и др....

About Yandex

Yandex is a technology company that builds intelligent products and services powered by machine learning. Our goal is to help consumers and businesses better navigate the online and offline world....

About the Машинное обучение и анализ данных Specialization

Мы покажем, как проходит полный цикл анализа, от сбора данных до выбора оптимального решения и оценки его качества. Вы научитесь пользоваться современными аналитическими инструментами и адаптировать их под особенности конкретных задач. В рамках специализации вы освоите основные темы, необходимые в работе с большим массивом данных, в т.ч. современные методы классификации и регрессии, поиск структуры в данных, проведение экспериментов, построение выводов, базовая фундаментальная математика, основы программирования на Python. Мы разберём, как построить рекомендательную систему, оценить эмоциональную окраску текста, спрогнозировать спрос на товар, оценить вероятность клика по рекламе и т.д. В финале вам потребуется выполнить проект собственной системы, решающей любую актуальную для бизнеса задачу. Результатом будет наглядная работающая модель, которую вы сможете использовать в вашей повседневной работе или продемонстрировать на собеседовании. Все, прошедшие специализацию, могут принять участие в Программе трудоустройства. Если вы заинтересованы в новых проектах, новых перспективах и возможностях - пройдите обучение по Специализации и подайте заявку....
Машинное обучение и анализ данных

Frequently Asked Questions

  • Once you enroll for a Certificate, you’ll have access to all videos, quizzes, and programming assignments (if applicable). Peer review assignments can only be submitted and reviewed once your session has begun. If you choose to explore the course without purchasing, you may not be able to access certain assignments.

  • When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.

More questions? Visit the Learner Help Center.