About this Course

Shareable Certificate

Earn a Certificate upon completion

100% online

Start instantly and learn at your own schedule.

Flexible deadlines

Reset deadlines in accordance to your schedule.

Intermediate Level

Approx. 15 hours to complete


Subtitles: French, Portuguese (Brazilian), German, English, Spanish, Japanese...

Shareable Certificate

Earn a Certificate upon completion

100% online

Start instantly and learn at your own schedule.

Flexible deadlines

Reset deadlines in accordance to your schedule.

Intermediate Level

Approx. 15 hours to complete


Subtitles: French, Portuguese (Brazilian), German, English, Spanish, Japanese...

Offered by

Google Cloud logo

Google Cloud

Syllabus - What you will learn from this course


Week 1

1 hour to complete

Willkommen zum serverlosen maschinellen Lernen mit der Google Cloud Platform

1 hour to complete
2 videos (Total 5 min), 1 reading, 1 quiz
2 videos
Überlegungen zum maschinellen Lernen2m
1 reading
Kursressourcen herunterladen10m
1 practice exercise
ML-Kurs – Vorabfragen30m
3 hours to complete

Modul 1: Einführung in maschinelles Lernen

3 hours to complete
21 videos (Total 109 min)
21 videos
Arten von ML3m
Die ML-Pipeline2m
Varianten des ML-Modells7m
ML-Problem eingrenzen2m
Maschinelles Lernen (ML) ausprobieren8m
Sichere Testumgebung für neuronale Netzwerke18m
Funktionen kombinieren3m
Feature Engineering3m
Effektives ML2m
Was macht ein gutes Dataset aus?5m
Genauigkeit und Trefferquote5m
Datasets für maschinelles Lernen erstellen3m
Datasets aufteilen6m
Übersicht zum Lab "Datasets für maschinelles Lernen erstellen"3m
Zusammenfassung zum Lab "Datasets für maschinelles Lernen erstellen"2m
1 practice exercise
Quiz zu Modul 130m
6 hours to complete

Modul 2: ML-Modelle mit TensorFlow erstellen

6 hours to complete
15 videos (Total 65 min)
15 videos
Was ist TensorFlow?5m
Core TensorFlow5m
Übersicht zum Lab "Einführung in TensorFlow"7s
Zusammenfassung zum TensorFlow-Lab10m
Estimator API8m
Maschinelles Lernen mit tf.estimator15s
Zusammenfassung zum Lab "Estimator"7m
Effektives ML ermöglichen6m
Einführung zum Lab "Refaktorierung zum Hinzufügen von Stapelverarbeitung und Funktionserstellung"38s
Zusammenfassung zum Lab "Refaktorierung"4m
Trainieren und Bewerten4m
Einführung zum Lab "Verteiltes Training und Monitoring"2m
Zusammenfassung zum Lab "Verteiltes Training und Monitoring"7m
1 practice exercise
Quiz zu Modul 230m
2 hours to complete

Modul 3: ML-Modelle mit Cloud ML Engine skalieren

2 hours to complete
7 videos (Total 28 min)
7 videos
Vorteile der Cloud ML Engine6m
Arbeitsablauf bei der Entwicklung1m
Trainingspakete erstellen3m
TensorFlow bereitstellen3m
Lab: ML hochskalieren39s
Zusammenfassung zum Lab "ML hochskalieren"10m
1 practice exercise
Quiz für Modul 330m
3 hours to complete

Modul 4: Feature Engineering

3 hours to complete
16 videos (Total 92 min)
16 videos
Gute Funktionen7m
Ausreichende Beispiele7m
Von den Rohdaten zur Funktion1m
Kategoriale Merkmale8m
Breit und tief5m
Einsatzbereiche für Feature Engineering3m
Überblick zum Lab "Feature Engineering"3m
Zusammenfassung zum Lab "Feature Engineering"10m
Hyperparameter-Abstimmung + Demo15m
1 practice exercise
Quiz zu Modul 430m

About the Data Engineering on Google Cloud Platform auf Deutsch Specialization

Dieser fünfwöchige Onlinevertiefungskurs bietet eine praktische Einführung zum Entwerfen und Erstellen von Datenverarbeitungssystemen auf der Google Cloud Platform. In Präsentationen, Demos und praxisorientierten Labs entwickeln die Teilnehmer Datenverarbeitungssysteme, erstellen End-to-End-Datenpipelines, analysieren Daten und üben maschinelles Lernen. Dieser Kurs vermittelt den Teilnehmern die folgenden Kompetenzen: • Datenverarbeitungssysteme auf der Google Cloud Platform entwickeln • Unstrukturierte Daten mit Spark und ML-APIs auf Cloud Dataproc verwenden • Batch- und Streaming-Daten durch die Implementierung von Autoscaling-Datenpipelines auf Cloud Dataflow verarbeiten • Mit Google BigQuery Geschäftsinformationen aus extrem großen Datasets ableiten • Modelle des maschinellen Lernens mit TensorFlow und Cloud ML trainieren, auswerten und damit Vorhersagen treffen • Sofortige Statistiken aus Streaming-Daten ermöglichen • Dieser Kurs richtet sich an erfahrene Entwickler, die für die Verwaltung von Big Data-Transformationen verantwortlich sind, zum Beispiel: • Daten extrahieren, laden, transformieren, bereinigen und validieren • Pipelines und Architekturen für die Datenverarbeitung entwerfen • Modelle des maschinellen Lernens und der Statistik erstellen und warten • Datasets abfragen, Abfrageergebnisse visualisieren und Berichte erstellen >>> Mit Ihrer Teilnahme an dieser Spezialisierung stimmen Sie den Nutzungsbedingungen von Qwiklabs zu, die Sie in den FAQs und unter folgendem Link finden: https://qwiklabs.com/terms_of_service <<<...
Data Engineering on Google Cloud Platform auf Deutsch

Frequently Asked Questions

  • Yes, you can preview the first video and view the syllabus before you enroll. You must purchase the course to access content not included in the preview.

  • If you decide to enroll in the course before the session start date, you will have access to all of the lecture videos and readings for the course. You’ll be able to submit assignments once the session starts.

  • Once you enroll and your session begins, you will have access to all videos and other resources, including reading items and the course discussion forum. You’ll be able to view and submit practice assessments, and complete required graded assignments to earn a grade and a Course Certificate.

  • If you complete the course successfully, your electronic Course Certificate will be added to your Accomplishments page - from there, you can print your Course Certificate or add it to your LinkedIn profile.

  • This course is one of a few offered on Coursera that are currently available only to learners who have paid or received financial aid, when available.

  • If you subscribed, you get a 7-day free trial during which you can cancel at no penalty. After that, we don’t give refunds, but you can cancel your subscription at any time. See our full refund policy.

  • Yes, Coursera provides financial aid to learners who cannot afford the fee. Apply for it by clicking on the Financial Aid link beneath the "Enroll" button on the left. You'll be prompted to complete an application and will be notified if you are approved. You'll need to complete this step for each course in the Specialization, including the Capstone Project. Learn more.

  • Before enrolling in this course, participants should have roughly one (1) year of experience with one or more of the following:

    • Knowledge of Google Cloud Platform

    • Big Data & Machine Learning Fundamentals to the level of "Google Cloud Platform Big Data and Machine Learning Fundamentals" on Coursera

    • Knowledge of BigQuery and Dataflow to the level of "Serverless Data Analysis with Google BigQuery and Cloud Dataflow" on Coursera

    • Knowledge of Python and familiarity with the numpy package

    • Knowledge of undergraduate-level statistics to the level of a Basic Statistics course on Coursera

  • To be eligible for the free trial, you will need:

    - Google account (Google is currently blocked in China)

    - Credit card or bank account

    - Terms of service

    Note: There is a known issue with certain EU countries where individuals are not able to sign up, but you may sign up as "business" status and intend to see a potential economic benefit from the trial. More details at: https://support.google.com/cloud/answer/6090602

    More Google Cloud Platform free trial FAQs are available at: https://cloud.google.com/free-trial/

    For more details on how the free trial works, visit our documentation page: https://cloud.google.com/free-trial/docs/

  • If your current Google account is no longer eligible for the Google Cloud Platform free trial, you can create another Google account. Your new Google account should be used to sign up for the free trial.

  • View this page for more details: https://cloud.google.com/free-trial/docs/

  • Yes, this online course is based on the instructor-led training formerly known as CPB102.

  • The course covers the topics presented on the certification exam, however we recommend additional preparation including hands-on product experience. The best preparation for certification is real-world, hands-on experience. Review the Google Certified Professional Data Engineer certification preparation guide for further information and resources at https://cloud.google.com/certification/guides/data-engineer/

  • Google’s Certification Program gives customers and partners a way to demonstrate their technical skills in a particular job-role and technology. Individuals are assessed using a variety of rigorously developed industry-standard methods to determine whether they meet Google’s proficiency standards. Read more at https://cloud.google.com/certification/

  • This Course doesn't carry university credit, but some universities may choose to accept Course Certificates for credit. Check with your institution to learn more. Online Degrees and Mastertrack™ Certificates on Coursera provide the opportunity to earn university credit.

More questions? Visit the Learner Help Center.