Chevron Left
Back to Построение выводов по данным

Learner Reviews & Feedback for Построение выводов по данным by Moscow Institute of Physics and Technology

4.7
809 ratings
112 reviews

About the Course

Влияет ли знание методов анализа данных на уровень заработной платы? Работает ли система оценки кредитоспособности клиентов банка? Действительно ли новый баннер лучше старого? Чтобы ответить на такие вопросы, нужно собрать данные. Данные почти всегда содержат шум, поэтому утверждения, которые можно сделать на их основе, верны не всегда, а только с определённой вероятностью. Строить наиболее корректные выводы и численно оценивать степень уверенности в них помогают методы статистики. Как можно оценивать неизвестные параметры системы по небольшому количеству наблюдений? Как измерить точность таких оценок? Какие данные нужны, чтобы ответить на ваш вопрос, и на какие вопросы можно ответить с помощью уже имеющихся данных? Вы узнаете все, что нужно для успешного превращения данных в выводы — организация экспериментов, A/B-тестирование, универсальные методы оценки параметров и проверки гипотез, корреляции и причинно-следственные связи. Задания и видео курса разработаны на Python 2....

Top reviews

PK

May 04, 2018

Отличный вводный курс, как и вся специализация. Доступно и понятно изложены все базовые вещи, которые могут потребоваться в повседневной деятельности в качестве data scientist.

SM

Jun 27, 2016

Интересный и достаточно сложный для меня курс. Не хватает только методички с кратким описанием основных методов, критериев и условий их применения.

Filter by:

1 - 25 of 109 Reviews for Построение выводов по данным

By Vadim C

Dec 23, 2018

Хорошая картинка, огромный минус чистый академический язык непонятный обывателю. Читают студенты как по учебнику. Было бы понятней если бы они отвлеклись от формул и расскаазали о причиноследственных связях: почему именно так лучше решить задачу, как люди пришли к этому, ненаглядно сплошные формулы и скрипты без обьяснения типа вот смотрите аксиома, а почему так...

By Толмачев А А

Jan 28, 2019

Шикарные знания в части аб тестирования + проверки факторов в регрессионной модели, чистый кайф. Спасибо Вам большое! Мне лично было очень тяжело понимать логику аб тестов, до сих пор буду вспоминать как страшный сон

By Sergey

Mar 30, 2019

This one is truly amazing. For a long time, I was looking for a statistics course that's neither oversimplified (like, learning the definition of the variance for good half a year), nor too complex (making me lost right away). This course is the very reason I've enrolled to the whole specialization, and I don't regret it. It gave me clarity about various commonly used tests, and a flavor of when and how I should use those.

Dear course instructors, thanks for you work, and please consider translating this one into English. There are many people out there, who would benefit from it.

By Leonid S

Jan 11, 2017

Курс дал общее, и что важно неповерхностное понятие о мат. статистике, о том, как она применяется в задачах Машинного Обучения

By Artem D

Dec 30, 2018

До прохождения курса у меня не было никакого бэкграунда в математической статистике. Курс показался мне сложным.

Я поставлю 5 звезд, т.к. указано "Advanced Level", в противном случае моя оценка была бы ниже.

Мне понравилось: объем предоставленного материала с т.з как статистики, так и имплементации в Python, формат квизов и прочих заданий.

Мне не понравилось: слишком научное и при этом неподробное изложение материала, после которого не приходит интуитивного понимания происходящего; неочевидная структура курса.

Мне очень помогли пройти этот курс бесплатные курсы на stepik.org от Анатолия Карпова (Институт Биоинформатики). Я однозначно пройду все его курсы по основам статистики полностью для закрепления и структурирования материала.

By Sergey M

Jun 27, 2016

Интересный и достаточно сложный для меня курс. Не хватает только методички с кратким описанием основных методов, критериев и условий их применения.

By Кузьмин Ю

Dec 03, 2017

Курс очень насыщенный, наконец с реальными практическими задачами и примерами. Очень порадовала неделя 4 - интервью со специалистами, решающими реальные задачи анализа данных. Наверное, самый интересный и полезный курс из всех. На неделе 4 советую обязательно пройти тесты - они расширяют лекционный материал и дают новые знания.

По недостаткам. Мне лично не хватило систематизации и немного более "человеческого" изложения. Поясню. на протяжении курса проходили много различных критериев, применяемых в различных ситуациях. Но не было в итоге какого-то общего, обобщающего занятия, в котором бы была показана ретроспектива курса и наглядно показаны все пройденные критерии (например, в виде таблицы - какие задачи может решать, к какой шкале применяется, какая нулевая гипотеза рассматривается, какие требования к данным и т.п.). Под "человеческим" изложением я понимаю, что можно было бы дополнительно переводить некоторые понятия (например, формулировки нулевых гипотез) с математического языка на более простой. Ещё из пожеланий - сопровождать ipython-ноутбуки в уроках комментариями, что и зачем делается (комментарии есть только в уроке про регрессию). И последнее - почти "мёртвый" форум.

Судя по тому, что в специализации уже больше года не происходит ничего нового - и эти мои пожелания не будут приняты во внимание, но поступающим, думаю, будет полезно иметь это в виду и сформировать правильные ожидания от курса.

By Ilya P

Sep 01, 2017

Лектор очень плохо объясняет: старается использовать сложные термины, что может возвышать его в глазах девушек, но не помогает учебному процессу. Делает много отступлений, чтобы показать какими серьезными и сложными делами он тут занимается, а это время можно было бы потратить на простое и доступное изложение материала.

By Вернер А И

Jan 18, 2019

Ужасно тяжёлый курс. Колоссальный объём материала, кошмарные задания по программированию. Объём работы никак не соответствует четырём неделям.

By Ivan S

Jan 11, 2019

Замечательный курс! Очень полезен для изучения и усвоения науки о данных, их осмысления и осознанного применения.

By Гридасов И И

Jan 16, 2019

Курс помогает освоить такие фундаментальные методы, как постановка гипотез и даёт интуицию на то, какой критерий нужно применить в конкретной ситуации. Если вы хотите не просто подкручивать гиперпараметры xgboost-а, то вам сюда)

By Domnin V

Feb 28, 2019

Пока мой самый любимый курс в специализации. Он напоминает насколько случайны выводы полученные по выборке. Спасибо Евгению, что смог настолько информативно (сжато и не теряя в понимании) передать учебник по мат. статистике.

By Иванов Р В

Apr 01, 2019

Замечательный , сложный курс.

By Aleksei K

Jan 29, 2019

Довольно насыщенный курс!

By Данил А

Jan 18, 2019

Отлично велись лекции по статистике, хоть и затрагивалось не все аспекты, главное было очень интересно. В лекциях по статистике это важно, очень.

By Рубненков И А

Mar 31, 2019

Лучший курс специализации. Однако тест по ранжированию это какой-то кошмар.

By Георгий Б

Mar 31, 2019

Спасибо за отличный курс!

By Красовский И В

Mar 17, 2019

Я бы поставил этот курс на второе место по полезности (на первое место стоит отправить 2 курс специализации).

Этот курс учит как действительно работать с данным и принимать решения на данных. Значение построение выводов по данным сложно переоценить, т.к. это является итогом работы любой модели.анализа

By Федор Е

Jul 10, 2018

Курс показался сложнее первых трех, но при этом по-своему интересней. Для некоторых заданий одних лекций не хватало и требовалось вникнуть глубже в материал, что зачастую очень полезно. В остальном все на высоком уровне, спасибо!)

By Александр Т

Jul 10, 2018

Из четырех первых курсов этот - самый сильный как по объему материала, так и с методической точки зрения.

By Петров И В

Sep 27, 2018

Из всех четырёх курсов - этот был для меня самым сложным, но дал хотя бы приблизительное понимание о том как работает статистика, чего не дал мне, например, курс по статистике в моём вузе.

By Kuznetsov A S

Aug 13, 2018

Пока наиболее интересный в плане подачи курс из пройденных в специализации.

By Гориненко А

Nov 18, 2018

Огонь и вскрытие мозга! То что нужно, чтобы не заболеть альцгеймером

By Andrey A

Jan 06, 2017

Самый сложный и содержательный курс специализации, особенно последняя неделя - огонь! такие качественные кейчы от спецов. Респект ребята!

By Igor K

Aug 09, 2016

Excellent!