Chevron Left
Back to Введение в машинное обучение

Learner Reviews & Feedback for Введение в машинное обучение by HSE University

4.6
stars
2,418 ratings
498 reviews

About the Course

Не так давно получил распространение термин «большие данные», обозначивший новую прикладную область — поиск способов автоматического быстрого анализа огромных объёмов разнородной информации. Наука о больших данных ещё только оформляется, но уже сейчас она очень востребована — и в будущем будет востребована только больше. С её помощью можно решать невероятные задачи: оценивать состояние печени по кардиограмме, предсказывать зарплату по описанию вакансии, предлагать пользователю музыку на основании его анкеты в интернете. Большими данными может оказаться что угодно: результаты научных экспериментов, логи банковских транзакций, метеорологические наблюдения, профили в социальных сетях — словом, всё, что может быть полезно проанализировать. Самым перспективным подходом к анализу больших данных считается применение машинного обучения — набора методов, благодаря которым компьютер может находить в массивах изначально неизвестные взаимосвязи и закономерности. На факультете компьютерных наук ВШЭ и в Школе анализа данных есть люди, активно использующие машинное обучение и разрабатывающие новые подходы к нему. Именно они — преподаватели этого курса. В онлайн курсе вы изучите основные типы задач, решаемых с помощью машинного обучения — в основном речь пойдёт о классификации, регрессии и кластеризации. Узнаете об основных методах машинного обучения и их особенностях, научитесь оценивать качество моделей — и решать, подходит ли модель для решения конкретной задачи. Наконец, познакомитесь с современными библиотеками, в которых реализованы обсуждаемые модели и методы оценки их качества. Для работы мы будем использовать реальные данные из реальных задач. Слушателю нужно знать об основных понятиях математики: функциях, производных, векторах, матрицах. Для выполнения практических заданий потребуются базовые навыки программирования на языке Python. Задания рассчитаны на использование этого языка и его библиотек numpy, pandas и scikit-learn. Чтобы успешно завершить курс, нужно набрать проходную сумму баллов за тесты и практические задания, а также выполнить финальный проект, посвящённый решению прикладной задачи анализа данных. Мы уверены, что этот курс будет полезен каждому, кто хочет постичь искусство предсказательного моделирования и освоить интеллектуальный анализ данных. Появились технические трудности? Обращайтесь на адрес: coursera@hse.ru...

Top reviews

AA
Jun 14, 2016

Хороший курс без лишнего. Некоторые методы, предлагаемые в заданиях не оптимальны с точки зрения затрат ресурсов компьютера и времени программиста, но, надеюсь, с новыми сессиями будет развитие курса.

AL
Sep 24, 2018

Понравилось отсутствие "разжевывания" материала, короткие и информативные видео-лекции, довольно интересные задания. Курс дал начальное понимание основных принципов и направлений в ML.

Filter by:

126 - 150 of 483 Reviews for Введение в машинное обучение

By Прошян Г А

Sep 4, 2019

Отличный курс, но не лучший выбор курса, чтобы сделать первый шаг в ML. Курс предполагает наличие знаний по матану, материал не разжеван, нужно много гуглить

By Ольга К

Nov 25, 2019

Спасибо преподавателям, коротко, без воды, очень полезные тесты и практические занятия. Но главное - мотивирует на дальнейшее обучение в данном направлении.

By Denis Z

Dec 4, 2017

В конце курса понял, что хочу стать настоящим мужчиной, как Воронцов Константин Вячеславович. Для меня курс стал входной дверью, т.к. курс от яникса дикий.

By Коноваленко И В

May 8, 2019

Курс очень увлекательный, он позволил мне вникнуть в предметную область, рассмотреть основные особенности алгоритмов и установить вектор будущего развития

By Andrey S

Apr 9, 2018

Курс понравился. Очень хороший баланс между теорией и практикой, никакой воды в рассуждениях, всё по делу. И практические задания интересные. Рекомендую

By Nikita B

Jul 27, 2017

Очень хороший базовый курс. Дает общее представление о принципах и методах машинного обучения, навыки работы с популярной библиотекой scikit-learn.

By Александр З

Aug 10, 2017

Курс получился достаточно насыщенным в плане обзора различных методов, но требует хорошего понимания математики, чтобы усвоить теоретическую часть.

By Maksim

Feb 7, 2016

Отличный курс. Задания впечатляют - все хорошо продумано и дает возможность разобраться как в теории, так и с пакетом (с коим дела раньше не имел).

By Toy J

May 31, 2020

Мой первый курс на Courseara, рад что сразу так очень повезло, лекторы классные, уроки классные, появилось желание поступить в ВШЭ. Успехов Вам!

By Лопатин В А

Sep 22, 2017

Отличный курс для знакомства с темой машинного обучения и получения начального опыта программирования на Python с использованием scikit-learn.

By Даниил Ж

May 4, 2020

Мне очень понравилось! Было много практики, много программирования, а из теории были только максимально важные для решения практики термины.

By Theodor B

Feb 18, 2018

Отличный курс - было очень приятно учиться. Сильно мешало незнание python (начал учить по ходу). Последние лекции были особенно интересны.

By Dmitriy S

Dec 21, 2017

Неплохой курс на русском языке. Объясняет базовые подходы, проблемы и их решения. Можно пройти курс, даже если не разу не писал на Питоне.

By Михаил Ю Г

Oct 14, 2019

Формулирование тестовых заданий происходит в очень расплывчатой манере. Мне кажется можно их усложнить, но формулировать все же по чётче.

By Danilov S

Jan 23, 2020

Хороший сбалансированный курс, свежий и проходится на одном дыхании, очень приятные преподаватели, местами нужны хорошие входные данные.

By Fedor M

Jul 17, 2016

Очень глубокое погружение в тему. Сильно занижены предварительные навыки, что делает для некоторых этот курс невозможным для завершения.

By Хабиров Т Р

Dec 12, 2018

Отличный вводный курс для начинающих с нуля. После прохождения появляется представление о том, как решаются задачи машинного обучения.

By Михеев И Е

May 7, 2020

курс классный, очень быстрый рост сложности заданий для человека который дальше циклов в питоне не ходил, но выполнимый и полезный.

By Oleg O

Aug 20, 2016

Сначала курс казался немного непонятным, но хорошие лекторы и повторение материала в конце расставили всё по своим местам. Спасибо!

By Konstantin

Mar 12, 2016

"Лучше игрушечная задача на реальных данных, чем реальная задача на игрушечных" - очень правильно подмечено.

Курс крайне понравился.

By Пчелинцев А В

Mar 25, 2020

Курс сбалансирован по обзору теоретического материала и получаемым практическим навыкам. Т.е. как введение курс вполне оправдан.

By Виталий Х

Mar 11, 2016

Спасибо.Курс достаточно хорош для первого знакомства с машинным обучением.Очень понравился курс и разнообразие прикладных задач.

By Aleksandr S

Apr 7, 2020

Мне понравилось. Как начинающему были даны хорошие базовые знания, к тому же оставили много вопросов для дальнейшего изучения.

By Есипов И М

Jun 4, 2020

Хороший курс, на мой взгляд, мало заданий на программирование самих моделей обучения, но в целом неплохо, ожидания оправдал

By Бердников В А

Jul 3, 2018

Хороший курс, но требует нормального знания Python и намного больше времени чем указано в описании (если Python не знаешь).