Loading...

The Riemann Mapping Theorem

We’ll begin this module by studying inverse functions of analytic functions such as the complex logarithm (inverse of the exponential) and complex roots (inverses of power) functions. In order to possess a (local) inverse, an analytic function needs to have a non-zero derivative, and we’ll discover the powerful fact that at any such place an analytic function preserves angles between curves and is therefore a conformal mapping! We'll spend two lectures talking about very special conformal mappings, namely Möbius transformations; these are some of the most fundamental mappings in geometric analysis. We'll finish this module with the famous and stunning Riemann mapping theorem. This theorem allows us to study arbitrary simply connected sub-regions of the complex plane by transporting geometry and complex analysis from the unit disk to those domains via conformal mappings, the existence of which is guaranteed via the Riemann Mapping Theorem.

About Coursera

Courses, Specializations, and Online Degrees taught by top instructors from the world's best universities and educational institutions.

Community
Join a community of 40 million learners from around the world
Certificate
Earn a skill-based course certificate to apply your knowledge
Career
Gain confidence in your skills and further your career