In this module, students will get first get introduced to techniques for manipulating geospatial objects using geospatial libraries in Python. Specifically, we will learn how to manipulate both vector and raster data objects using Shapely and RasterIO libraries. Next, students get introduced to using the Hadoop paradigm for taming big geospatial data. Specifically, we will learn the fundamentals of how to process big spatial data with Hadoop. Students will get a brief introduction to the Hadoop framework, its major components, and its characteristics, and will learn about Hadoop Distributed File System (HDFS), its architecture and simple commands to interact with it. We will also learn about the MapReduce computing paradigm and see an example of how it may be applied using Hadoop streaming API to process New York City taxi data.