Unsupervised Learning: Introduction

Loading...
Stanford University
4.9 (114,547 ratings) | 2.5M Students Enrolled
View Syllabus

Skills You'll Learn

Logistic Regression, Artificial Neural Network, Machine Learning (ML) Algorithms, Machine Learning

Reviews

4.9 (114,547 ratings)
  • 5 stars
    106,088 ratings
  • 4 stars
    7,797 ratings
  • 3 stars
    491 ratings
  • 2 stars
    83 ratings
  • 1 star
    88 ratings
ML

Aug 19, 2017

Very helpful and easy to learn. The quiz and programming assignments are well designed and very useful. Thank Prof. Andrew Ng and coursera and the ones who share their problems and ideas in the forum.

OK

Apr 18, 2018

You need to know, what do you want to get out of this course. It gives you a lot of information, but be prepared to work hard with linear algeabra and make efforts to compute things in Mathlab/Octave.

From the lesson
Unsupervised Learning
We use unsupervised learning to build models that help us understand our data better. We discuss the k-Means algorithm for clustering that enable us to learn groupings of unlabeled data points.

Taught By

  • Andrew Ng

    Andrew Ng

    CEO/Founder Landing AI; Co-founder, Coursera; Adjunct Professor, Stanford University; formerly Chief Scientist,Baidu and founding lead of Google Brain

Explore our Catalog

Join for free and get personalized recommendations, updates and offers.