이 과정은 기본 확률 이론뿐만 아니라 데이터 표본 추출 및 탐색을 소개합니다. 다양한 유형의 표본 추출 방법을 조사하고 이러한 방법이 데이터 분석의 유용성에 어떻게 영향을 미칠 수 있는지 논의합니다. 이 모듈의 개념은 이후 과정의 빌딩 블록 역할을 합니다. 각 단원에는 일련의 짧은 비디오에서 다룰 학습 목표 세트가 함께 제공됩니다. 보충 읽기 및 연습 문제는 OpenIntro Statistics, 3판, https://leanpub.com/openintro-statistics/(제가 공저한 무료 온라인 통계학 입문 교재)에서도 제안됩니다. 비디오에서 그 주에 다룬 자료의 학습과 숙달을 평가하도록 설계된 주간 퀴즈가 있습니다. 또한 매주 R을 사용하여 학습한 내용을 실제 데이터에 적용하는 실습 과제도 제공됩니다. 자신이 선택한 연구 질문에 답할 수 있도록 설계된 데이터 분석 프로젝트도 있습니다. 이것은 Coursera 과정이기 때문에 원하는 만큼 참여할 수 있습니다. 하지만 처음에는 최대한 참여하는 것으로 시작하기를 바랍니다. Coursera 과정의 가장 보람 있는 측면 중 하나는 과정 자료에 대한 포럼 토론에 참여하는 것입니다. 다른 학생들의 피드백과 통찰력을 활용하고 적절하다고 생각하는 경우 자신의 관점을 밝히십시오. 이 과정에 유용한 리소스를 나열하는 리소스 페이지(https://www.coursera.org/learn/probability-intro/resources/crMc4)를 확인할 수도 있습니다. 확률 및 데이터 소개 커뮤니티에 가입해 주셔서 감사합니다! 토론 포럼에서 인사하십시오. 여러분이 코스에 참여하기를 기다리고 있습니다.