このコースでは、TensorFlow 2.x 入力データ パイプラインの設計と構築、TensorFlow 2.x と Keras を使用した ML モデルの構築、ML モデルの精度の改善、スケーリングに対応した ML モデルの作成、特殊な ML モデルの作成について説明します。
このコースでは、TensorFlow 2.x 入力データ パイプラインの設計と構築、TensorFlow 2.x と Keras を使用した ML モデルの構築、ML モデルの精度の改善、スケーリングに対応した ML モデルの作成、特殊な ML モデルの作成について説明します。
From the lesson
入力データ パイプラインの設計と構築
データは、機械学習モデルのなかでもきわめて重大なコンポーネントです。適切なデータを収集するだけでは不十分で、必要に応じて、データのクリーニング、分析、変換を行う場所に適切なプロセスを導入する必要があります。そうすることで、モデルがデータの発する信号を最大限認識できるようになります。このモジュールでは、tf.data を含む大規模なデータセットを使用したトレーニング、メモリ内ファイルの操作、およびトレーニング用データの準備方法について話をします。その後エンベディングの話をして、最後に tf.keras 前処理レイヤを使用したデータのスケーリングについて概要を説明します。