Image Super Resolution Using Autoencoders in Keras

4.4
stars

335 ratings

Offered By

8,849 already enrolled

In this Guided Project, you will:

Understand what autoencoders are and why they are used

Design and train an autoencoder to increase the resolution of images with Keras

1.5 hours
Advanced
No download needed
Split-screen video
English
Desktop only

Welcome to this 1.5 hours long hands-on project on Image Super Resolution using Autoencoders in Keras. In this project, you’re going to learn what an autoencoder is, use Keras with Tensorflow as its backend to train your own autoencoder, and use this deep learning powered autoencoder to significantly enhance the quality of images. That is, our neural network will create high-resolution images from low-res source images. This course runs on Coursera's hands-on project platform called Rhyme. On Rhyme, you do projects in a hands-on manner in your browser. You will get instant access to pre-configured cloud desktops containing all of the software and data you need for the project. Everything is already set up directly in your internet browser so you can just focus on learning. For this project, you’ll get instant access to a cloud desktop with Python, Jupyter, and Keras pre-installed. Notes: - You will be able to access the cloud desktop 5 times. However, you will be able to access instructions videos as many times as you want. - This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

Skills you will develop

  • Data Science

  • Deep Learning

  • Machine Learning

  • Computer Vision

  • keras

Learn step-by-step

In a video that plays in a split-screen with your work area, your instructor will walk you through these steps:

  1. Project Overview and Import Libraries

  2. What are Autoencoders?

  3. Build the Encoder

  4. Build the Decoder to Complete the Network

  5. Create Dataset and Specify Training Routine

  6. Load the Dataset and Pre-trained Model

  7. Model Predictions and Visualizing the Results

How Guided Projects work

Your workspace is a cloud desktop right in your browser, no download required

In a split-screen video, your instructor guides you step-by-step

Reviews

TOP REVIEWS FROM IMAGE SUPER RESOLUTION USING AUTOENCODERS IN KERAS

View all reviews

Frequently Asked Questions

By purchasing a Guided Project, you'll get everything you need to complete the Guided Project including access to a cloud desktop workspace through your web browser that contains the files and software you need to get started, plus step-by-step video instruction from a subject matter expert.

Because your workspace contains a cloud desktop that is sized for a laptop or desktop computer, Guided Projects are not available on your mobile device.

Guided Project instructors are subject matter experts who have experience in the skill, tool or domain of their project and are passionate about sharing their knowledge to impact millions of learners around the world.

You can download and keep any of your created files from the Guided Project. To do so, you can use the “File Browser” feature while you are accessing your cloud desktop.

Guided Projects are not eligible for refunds. See our full refund policy.

Financial aid is not available for Guided Projects.

Auditing is not available for Guided Projects.

At the top of the page, you can press on the experience level for this Guided Project to view any knowledge prerequisites. For every level of Guided Project, your instructor will walk you through step-by-step.

Yes, everything you need to complete your Guided Project will be available in a cloud desktop that is available in your browser.

You'll learn by doing through completing tasks in a split-screen environment directly in your browser. On the left side of the screen, you'll complete the task in your workspace. On the right side of the screen, you'll watch an instructor walk you through the project, step-by-step.