Predict Housing Prices in R on Boston Housing Data

4.3
stars
29 ratings
Offered By
Coursera Project Network
In this Guided Project, you will:

How to create Testing and Training Sets via R.

Ability to apply GBM, Random Forest, and Linear Models to a data set.

Ability to evaluate and choose the most accurate models.

Clock2 Hours
IntermediateIntermediate
CloudNo download needed
VideoSplit-screen video
Comment DotsEnglish
LaptopDesktop only

In this 1-hour long project-based course, you will learn how to (complete a training and test set using an R function, practice looking at data distribution using R and ggplot2, Apply a Random Forest model to the data, and examine the results using RMSE and a Confusion Matrix). Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

Skills you will develop

Machine LearningR ProgrammingData AnalysisRandom ForestExploratory Data Analysis

Learn step-by-step

In a video that plays in a split-screen with your work area, your instructor will walk you through these steps:

  1. Task 1: In this task the Learner will be introduced to the Course Objectives, which is to how to execute a Random Forest Model using R and the Boston Housing Data set. There will be a short discussion about the Interface and an Instructor Bio.

  2. Task 2: The Learners will get practice doing Exploratory Analysis using ggplot2. This is important in order for the practitioner to see the balance of the data, especially as it relates to the Response Variable.

  3. Task 3: The Learner will get experience creating Testing and Training Data Sets. There are multiple ways to do this in R. The Instructor will show the Learner how to do it using the Base R way and also using a function from the caret package.

  4. Task 4: The Learner will get experience with the syntax of the Caret, an R package. Then the Learner will create three models (Linear Regression, GBM, Random Forest) in one function call.

  5. Task 5: The Learner will get practice compiling the model results from the various models to decide which one performed the best.

  6. Task 6: The Learner will get practice looking and comparing multiple models using RMSE among other metrics.

How Guided Projects work

Your workspace is a cloud desktop right in your browser, no download required

In a split-screen video, your instructor guides you step-by-step

Reviews

TOP REVIEWS FROM PREDICT HOUSING PRICES IN R ON BOSTON HOUSING DATA

View all reviews

Frequently asked questions

Frequently Asked Questions

More questions? Visit the Learner Help Center.