- Ciencia de Datos Programación en Python Bases de Datos en la Nube ISistema de Gestión de Bases de Datos Relacionales (RDBMS) de Python SQL
- Computer Vision
- Analytics
- Deep Learning
- Regression Analysis
- Combination
- Average
- Mathematical Optimization
- Decision Tree
- Grouped Data
- Euler'S Totient Function
- Relational Database
Offered By


What you will learn
Describirá qué son la ciencia de datos y el aprendizaje automático, sus aplicaciones y casos de uso, y varios tipos de tareas.
Obtendrá familiaridad práctica con herramientas de ciencia de datos, como JupyterLab, R Studio, GitHub y Watson Studio.
Desarrollará la mentalidad para trabajar como un cientÃfico de datos y seguir una metodologÃa para abordar diferentes tipos de problemas.
Escribirá declaraciones SQL y consultará bases de datos en la nube con Python desde los notebooks Jupyter.
Skills you will gain
About this Specialization
Applied Learning Project
Utilizará herramientas como Jupyter, GitHub, R Studio y Watson Studio para completar laboratorios y proyectos prácticos a lo largo de la Especialización. Con las nuevas habilidades y conocimientos adquiridos a través del programa, también trabajará con conjuntos de datos del mundo real y los consultará mediante SQL desde los notebooks Jupyter.
No prior experience required.
No prior experience required.
How the Specialization Works
Take Courses
A Coursera Specialization is a series of courses that helps you master a skill. To begin, enroll in the Specialization directly, or review its courses and choose the one you'd like to start with. When you subscribe to a course that is part of a Specialization, you’re automatically subscribed to the full Specialization. It’s okay to complete just one course — you can pause your learning or end your subscription at any time. Visit your learner dashboard to track your course enrollments and your progress.
Hands-on Project
Every Specialization includes a hands-on project. You'll need to successfully finish the project(s) to complete the Specialization and earn your certificate. If the Specialization includes a separate course for the hands-on project, you'll need to finish each of the other courses before you can start it.
Earn a Certificate
When you finish every course and complete the hands-on project, you'll earn a Certificate that you can share with prospective employers and your professional network.

There are 4 Courses in this Specialization
¿Qué es la ciencia de datos?
El arte de descubrir los conocimientos y las tendencias de los datos ha existido desde la antigüedad. Los antiguos egipcios usaron datos del censo para aumentar la eficiencia en la recaudación de impuestos y predijeron con precisión la inundación del rÃo Nilo cada año. Desde entonces, las personas que trabajan en ciencia de datos han creado un campo único y distinto para el trabajo que realizan. Este campo es ciencia de datos. En este curso, conoceremos a algunos profesionales de la ciencia de datos y obtendremos una visión general de lo que es hoy la ciencia de datos.
Herramientas para la ciencia de datos
¿Cuáles son algunas de las herramientas de ciencia de datos más populares, cómo las usa y cuáles son sus caracterÃsticas? En este curso, aprenderá sobre Jupyter Notebooks, RStudio IDE, Apache Zeppelin y Data Science Experience. Aprenderá para qué se utiliza cada herramienta, qué lenguajes de programación pueden ejecutar, sus caracterÃsticas y limitaciones. Con las herramientas alojadas en la nube en Cognitive Class Labs, podrá probar cada herramienta y seguir las instrucciones para ejecutar código simple en Python, R o Scala. Para finalizar el curso, creará un proyecto final con un Jupyter Notebook en IBM Data Science Experience y demostrará su competencia preparando un cuaderno, escribiendo Markdown y compartiendo su trabajo con sus compañeros.
MetodologÃa de la ciencia de datos
A pesar del reciente aumento de la potencia informática y el acceso a los datos durante las últimas dos décadas, nuestra capacidad para utilizar los datos en el proceso de toma de decisiones se pierde o no se maximiza con demasiada frecuencia, no tenemos una comprensión sólida de las preguntas que se hacen y cómo aplicar los datos correctamente al problema en cuestión.
Bases de datos y SQL para ciencia de datos
Gran parte de los datos del mundo residen en bases de datos. SQL (o lenguaje de consulta estructurado) es un lenguaje poderoso que se utiliza para comunicarse y extraer datos de bases de datos. Un conocimiento práctico de bases de datos y SQL es imprescindible si desea convertirse en un cientÃfico de datos.
Offered by

IBM Skills Network
IBM is the global leader in business transformation through an open hybrid cloud platform and AI, serving clients in more than 170 countries around the world. Today 47 of the Fortune 50 Companies rely on the IBM Cloud to run their business, and IBM Watson enterprise AI is hard at work in more than 30,000 engagements. IBM is also one of the world’s most vital corporate research organizations, with 28 consecutive years of patent leadership. Above all, guided by principles for trust and transparency and support for a more inclusive society, IBM is committed to being a responsible technology innovator and a force for good in the world.
Frequently Asked Questions
What is the refund policy?
Is financial aid available?
What is the Refund Policy?
Can I just enroll in a single course?
Is financial aid available?]
Can I take the course for free?
Is this course really 100% online? Do I need to attend any classes in person?
How can I earn my IBM Badge?
What is data science?
What are some examples of careers in data science?
How long does it take to complete this Specialization?
What background knowledge is necessary?
Do I need to take the courses in a specific order?
Will I earn university credit for completing the Specialization?
What will I be able to do upon completing the Specialization?
More questions? Visit the Learner Help Center.