What you will learn
Describirá qué son la ciencia de datos y el aprendizaje automático, sus aplicaciones y casos de uso, y varios tipos de tareas.
Obtendrá familiaridad práctica con herramientas de ciencia de datos, como JupyterLab, R Studio, GitHub y Watson Studio.
Desarrollará la mentalidad para trabajar como un científico de datos y seguir una metodología para abordar diferentes tipos de problemas.
Escribirá declaraciones SQL y consultará bases de datos en la nube con Python desde los notebooks Jupyter.
Skills you will gain
About this Specialization
Applied Learning Project
Utilizará herramientas como Jupyter, GitHub, R Studio y Watson Studio para completar laboratorios y proyectos prácticos a lo largo de la Especialización. Con las nuevas habilidades y conocimientos adquiridos a través del programa, también trabajará con conjuntos de datos del mundo real y los consultará mediante SQL desde los notebooks Jupyter.
No prior experience required.
No prior experience required.
There are 4 Courses in this Specialization
¿Qué es la ciencia de datos?
El arte de descubrir los conocimientos y las tendencias de los datos ha existido desde la antigüedad. Los antiguos egipcios usaron datos del censo para aumentar la eficiencia en la recaudación de impuestos y predijeron con precisión la inundación del río Nilo cada año. Desde entonces, las personas que trabajan en ciencia de datos han creado un campo único y distinto para el trabajo que realizan. Este campo es ciencia de datos. En este curso, conoceremos a algunos profesionales de la ciencia de datos y obtendremos una visión general de lo que es hoy la ciencia de datos.
Herramientas para la ciencia de datos
¿Cuáles son algunas de las herramientas de ciencia de datos más populares, cómo las usa y cuáles son sus características? En este curso, aprenderá sobre Jupyter Notebooks, RStudio IDE, Apache Zeppelin y Data Science Experience. Aprenderá para qué se utiliza cada herramienta, qué lenguajes de programación pueden ejecutar, sus características y limitaciones. Con las herramientas alojadas en la nube en Cognitive Class Labs, podrá probar cada herramienta y seguir las instrucciones para ejecutar código simple en Python, R o Scala. Para finalizar el curso, creará un proyecto final con un Jupyter Notebook en IBM Data Science Experience y demostrará su competencia preparando un cuaderno, escribiendo Markdown y compartiendo su trabajo con sus compañeros.
Metodología de la ciencia de datos
A pesar del reciente aumento de la potencia informática y el acceso a los datos durante las últimas dos décadas, nuestra capacidad para utilizar los datos en el proceso de toma de decisiones se pierde o no se maximiza con demasiada frecuencia, no tenemos una comprensión sólida de las preguntas que se hacen y cómo aplicar los datos correctamente al problema en cuestión.
Bases de datos y SQL para ciencia de datos
Gran parte de los datos del mundo residen en bases de datos. SQL (o lenguaje de consulta estructurado) es un lenguaje poderoso que se utiliza para comunicarse y extraer datos de bases de datos. Un conocimiento práctico de bases de datos y SQL es imprescindible si desea convertirse en un científico de datos.
Offered by

IBM
IBM offers a wide range of technology and consulting services; a broad portfolio of middleware for collaboration, predictive analytics, software development and systems management; and the world's most advanced servers and supercomputers. Utilizing its business consulting, technology and R&D expertise, IBM helps clients become "smarter" as the planet becomes more digitally interconnected. IBM invests more than $6 billion a year in R&D, just completing its 21st year of patent leadership. IBM Research has received recognition beyond any commercial technology research organization and is home to 5 Nobel Laureates, 9 US National Medals of Technology, 5 US National Medals of Science, 6 Turing Awards, and 10 Inductees in US Inventors Hall of Fame.
Frequently Asked Questions
What is the refund policy?
Is financial aid available?
What is the Refund Policy?
Can I just enroll in a single course?
Is financial aid available?]
Can I take the course for free?
Is this course really 100% online? Do I need to attend any classes in person?
How can I earn my IBM Badge?
What is data science?
What are some examples of careers in data science?
How long does it take to complete this Specialization?
What background knowledge is necessary?
Do I need to take the courses in a specific order?
Will I earn university credit for completing the Specialization?
What will I be able to do upon completing the Specialization?
More questions? Visit the Learner Help Center.