About this Specialization

45,986 recent views
The Reinforcement Learning Specialization consists of 4 courses exploring the power of adaptive learning systems and artificial intelligence (AI). Harnessing the full potential of artificial intelligence requires adaptive learning systems. Learn how Reinforcement Learning (RL) solutions help solve real-world problems through trial-and-error interaction by implementing a complete RL solution from beginning to end. By the end of this Specialization, learners will understand the foundations of much of modern probabilistic artificial intelligence (AI) and be prepared to take more advanced courses or to apply AI tools and ideas to real-world problems. This content will focus on “small-scale” problems in order to understand the foundations of Reinforcement Learning, as taught by world-renowned experts at the University of Alberta, Faculty of Science. The tools learned in this Specialization can be applied to game development (AI), customer interaction (how a website interacts with customers), smart assistants, recommender systems, supply chain, industrial control, finance, oil & gas pipelines, industrial control systems, and more.
Shareable Certificate
Earn a Certificate upon completion
100% online courses
Start instantly and learn at your own schedule.
Flexible Schedule
Set and maintain flexible deadlines.
Intermediate Level
Approx. 5 months to complete
Suggested 5 hours/week
English
Subtitles: English
Shareable Certificate
Earn a Certificate upon completion
100% online courses
Start instantly and learn at your own schedule.
Flexible Schedule
Set and maintain flexible deadlines.
Intermediate Level
Approx. 5 months to complete
Suggested 5 hours/week
English
Subtitles: English

There are 4 Courses in this Specialization

Course1

Course 1

Fundamentals of Reinforcement Learning

4.8
stars
1,171 ratings
304 reviews
Course2

Course 2

Sample-based Learning Methods

4.8
stars
579 ratings
118 reviews
Course3

Course 3

Prediction and Control with Function Approximation

4.8
stars
375 ratings
65 reviews
Course4

Course 4

A Complete Reinforcement Learning System (Capstone)

4.6
stars
276 ratings
57 reviews

Offered by

University of Alberta logo

University of Alberta

Alberta Machine Intelligence Institute logo

Alberta Machine Intelligence Institute

Frequently Asked Questions

  • If you subscribed, you get a 7-day free trial during which you can cancel at no penalty. After that, we don’t give refunds, but you can cancel your subscription at any time. See our full refund policy.

  • Yes! To get started, click the course card that interests you and enroll. You can enroll and complete the course to earn a shareable certificate, or you can audit it to view the course materials for free. When you subscribe to a course that is part of a Specialization, you’re automatically subscribed to the full Specialization. Visit your learner dashboard to track your progress.

  • Yes, Coursera provides financial aid to learners who cannot afford the fee. Apply for it by clicking on the Financial Aid link beneath the "Enroll" button on the left. You'll be prompted to complete an application and will be notified if you are approved. You'll need to complete this step for each course in the Specialization, including the Capstone Project. Learn more.

  • When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. If you only want to read and view the course content, you can audit the course for free. If you cannot afford the fee, you can apply for financial aid.

  • This course is completely online, so there’s no need to show up to a classroom in person. You can access your lectures, readings and assignments anytime and anywhere via the web or your mobile device.

  • It is recommended that learners take between 4-6 months to complete the specialization.

  • Recommended that learners have at least one year of undergraduate computer science or 2-3 years of professional experience in software development. Experience and comfort with programming in Python required. Must be comfortable converting algorithms and pseudocode into Python. Basic understanding of concepts from statistics (distributions, sampling, expected values), linear algebra (vectors and matrices), and calculus (computing derivatives)

  • Yes, it is recommended that courses are taken sequentially.

  • Learners that complete the specialization will earn a Coursera specialization certificate signed by the professors of record, not a University of Alberta credit.

  • By the end of this specialization, you will be able to"

    • Build a Reinforcement Learning system for sequential decision making.
    • Understand the space of RL algorithms (Temporal- Difference learning, Monte Carlo, Sarsa, Q-learning, Policy Gradients, Dyna, and more).
    • Understand how to formalize your task as a Reinforcement Learning problem, and how to begin implementing a solution.
    • Understand how RL fits under the broader umbrella of machine learning, and how it complements deep learning, supervised and unsupervised learning 

More questions? Visit the Learner Help Center.