This course covers advanced deep learning topics, including Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), and modern language models. You will learn techniques for image classification, time series prediction, and natural language processing. The course includes building and optimizing CNNs for image recognition, using architectures such as AlexNet, VGGNet, GoogLeNet, and ResNet, and working with pre-trained models. You will also work with RNNs and LSTMs for tasks like forecasting and text autocompletion. The curriculum covers neural language models, word embeddings (such as Word2vec and wordpieces), encoder-decoder architectures, attention mechanisms, and Transformers for machine translation. Hands-on projects using TensorFlow and PyTorch will help you develop practical skills for solving real-world problems in computer vision and language processing.



Learning Deep Learning: Unit 2
This course is part of Learning Deep Learning Specialization

Instructor: Pearson
Access provided by Ministry of Public Administration of Slovenia
Recommended experience
What you'll learn
Build and optimize convolutional neural networks for advanced image classification tasks using TensorFlow and PyTorch.
Apply recurrent neural networks and LSTMs to sequential data problems, including time series forecasting and text autocompletion.
Develop neural language models and implement word embeddings for robust natural language processing.
Design and implement encoder-decoder architectures and Transformer models for machine translation and sequence-to-sequence tasks.
Skills you'll gain
Details to know

Add to your LinkedIn profile
4 assignments
August 2025
See how employees at top companies are mastering in-demand skills

Build your subject-matter expertise
- Learn new concepts from industry experts
- Gain a foundational understanding of a subject or tool
- Develop job-relevant skills with hands-on projects
- Earn a shareable career certificate

There is 1 module in this course
This module provides a comprehensive introduction to advanced deep learning techniques for processing images and natural language. It covers convolutional neural networks for image classification, including architectures like AlexNet, VGGNet, GoogLeNet, and ResNet. The module then explores recurrent neural networks and LSTMs for time series and sequential data, followed by neural language models and word embeddings. Finally, it introduces encoder-decoder architectures, attention mechanisms, and Transformer models for neural machine translation, with practical implementations in TensorFlow and PyTorch throughout.
What's included
44 videos4 assignments
Earn a career certificate
Add this credential to your LinkedIn profile, resume, or CV. Share it on social media and in your performance review.
Why people choose Coursera for their career







