In “Applied Information Extraction in Python,” you will learn how to extract useful information from free-text data, which is a type of string data created when people type. Examples of free-text data include names of people or organizations, location information such as cities and zip codes, or other elements like stock prices or clinical diagnoses. Free-text data is found everywhere, from magazine articles to social media posts, and can be complex to analyze.



Applied Information Extraction in Python
This course is part of More Applied Data Science with Python Specialization

Instructor: VG Vinod Vydiswaran
Access provided by Transport and Telecommunication Institute
Recommended experience
What you'll learn
Develop skills to process and interpret information presented in free-text data.
Identify the major classes of named entity recognition (NER) and implement, with guidance, state-of-the-art machine learning techniques for NER.
Compare, contrast, and select between multiple machine learning and deep learning approaches for NER.
Explore Large Language Models and configure a Transformer-based pipeline to extract entities of interest from a text dataset.
Skills you'll gain
Details to know

Add to your LinkedIn profile
14 assignments
June 2025
See how employees at top companies are mastering in-demand skills

Build your subject-matter expertise
- Learn new concepts from industry experts
- Gain a foundational understanding of a subject or tool
- Develop job-relevant skills with hands-on projects
- Earn a shareable career certificate

There are 4 modules in this course
This module introduces information extraction, covering key tasks and approaches for extracting relevant information from text. You will explore pattern-based and list-based methods to identify and extract information from text data, applying these techniques across diverse domains. You will also develop an end-to-end NLP pipeline to extract named entities from free text using terminology resources.
What's included
7 videos5 readings3 assignments1 programming assignment1 discussion prompt1 ungraded lab
In Module 2, you'll dive into the world of named entity recognition (NER). You'll learn to define and identify named entities, and understand how to tackle related tasks by framing them as NER challenges. We'll explore how to use resources like standardized terminology and named gazettes to enhance NER. You'll also gain hands-on experience by training a machine learning model for sequence classification using an annotated text dataset. Finally, we'll discuss the pros and cons of different Markov models for NER, equipping you with the insights needed for practical applications.
What's included
7 videos6 readings4 assignments1 programming assignment1 ungraded lab
In Module 3, focused on neural network models, you will explore the differences between training deep learning models and traditional machine learning models. You'll learn how to model and train a neural network-based classifier, as well as formulate text as features for NER model training. We will discuss the pros and cons of deep learning approaches. You'll design a neural network model to identify concepts from free text and apply a trained deep learning model to solve NER tasks.
What's included
5 videos4 readings4 assignments1 programming assignment1 ungraded lab
In this module, you'll dive into the power of deep learning models in diverse fields such as healthcare and sports commentary. You'll learn how to build neural network models that are fine-tuned for specific tasks and discover how to set up a deep neural network for detecting key entities. We'll also introduce you to the world of large language models, showcasing their transformative capabilities and applications in information extraction.
What's included
5 videos4 readings3 assignments1 programming assignment1 plugin
Earn a career certificate
Add this credential to your LinkedIn profile, resume, or CV. Share it on social media and in your performance review.
Instructor

Offered by
Why people choose Coursera for their career




Explore more from Data Science

University of Michigan

University of Michigan

University of Michigan

University of Michigan

