This course covers linear algebra, probability, and optimization. It begins with systems of equations, matrix operations, vector spaces, and eigenvalues. Advanced topics include Cholesky and singular value decomposition. Probability modules address Bayes' theorem, Gaussian distribution, and inference techniques. The course concludes with model selection methods and an introduction to optimization.

Entdecken Sie neue Fähigkeiten mit $120 Rabatt auf Kurse von Branchenexperten. Jetzt sparen.


Kompetenzen, die Sie erwerben
- Kategorie: Probability Distribution
- Kategorie: Linear Algebra
- Kategorie: Machine Learning
- Kategorie: Bayesian Statistics
- Kategorie: Applied Mathematics
- Kategorie: Algebra
- Kategorie: Statistical Inference
- Kategorie: Statistical Modeling
- Kategorie: Mathematical Modeling
- Kategorie: Probability
- Kategorie: Statistical Methods
- Kategorie: Statistical Machine Learning
Wichtige Details

Zu Ihrem LinkedIn-Profil hinzufĂźgen
6 Aufgaben
Erfahren Sie, wie Mitarbeiter fĂźhrender Unternehmen gefragte Kompetenzen erwerben.

In diesem Kurs gibt es 4 Module
This module provides a foundational understanding of linear algebra concepts essential for statistical learning and algorithms. You will explore the principles of linear systems, matrix operations, vector spaces, orthogonality, and projections. These topics will lay the groundwork for understanding more advanced machine learning and statistical modeling techniques.
Das ist alles enthalten
4 Videos20 LektĂźren3 Aufgaben1 App-Element1 Diskussionsthema
This module covers essential linear algebra concepts, focusing on linear mappings, eigenvectors, eigenvalues, Cholesky decomposition, and singular value decomposition. You'll learn to apply linear mappings, interpret eigenvectors and eigenvalues, and explore the Cholesky decomposition for symmetric, positive definite matrices. Additionally, you'll delve into singular value decomposition and its applications. The lessons include linear independence, linear mappings, eigenvalues and eigenvectors, Cholesky decomposition, and singular value decomposition, providing a comprehensive understanding of these critical topics.
Das ist alles enthalten
2 Videos11 LektĂźren1 Aufgabe1 App-Element
This module focuses on essential probability concepts and their applications in machine learning. You will explore the sum rule, product rule, and Bayes' theorem, understanding how these principles are applied to solve complex problems. Additionally, you'll learn to apply Bayesian inference to estimate hidden variables from observed data, enhancing your ability to make informed predictions and decisions in machine learning contexts. These topics will provide a solid foundation for understanding and implementing probabilistic models in various machine learning scenarios.
Das ist alles enthalten
11 LektĂźren1 Aufgabe
This module covers key techniques for enhancing machine learning models. You will learn to minimize the error or loss of a model through various optimization methods. Additionally, you'll explore different cross-validation techniques to assess model performance and generalizability. By examining various optimization techniques, you'll improve model accuracy and efficiency. These topics will equip you with the skills to fine-tune and validate your machine learning models effectively.
Das ist alles enthalten
15 LektĂźren1 Aufgabe
Erwerben Sie ein Karrierezertifikat.
FĂźgen Sie dieses Zeugnis Ihrem LinkedIn-Profil, Lebenslauf oder CV hinzu. Teilen Sie sie in Social Media und in Ihrer Leistungsbeurteilung.
Dozent

Mehr von Mechanical Engineering entdecken
- Status: Kostenloser Testzeitraum
Johns Hopkins University
- Status: Kostenloser Testzeitraum
Fractal Analytics
- Status: Kostenloser Testzeitraum
Johns Hopkins University
- Status: Vorschau
Johns Hopkins University
Warum entscheiden sich Menschen fĂźr Coursera fĂźr ihre Karriere?





Neue KarrieremĂśglichkeiten mit Coursera Plus
Unbegrenzter Zugang zu 10,000+ Weltklasse-Kursen, praktischen Projekten und berufsqualifizierenden Zertifikatsprogrammen - alles in Ihrem Abonnement enthalten
Bringen Sie Ihre Karriere mit einem Online-Abschluss voran.
Erwerben Sie einen Abschluss von erstklassigen Universitäten â 100 % online
SchlieĂen Sie sich mehr als 3.400Â Unternehmen in aller Welt an, die sich fĂźr Coursera for Business entschieden haben.
Schulen Sie Ihre Mitarbeiter*innen, um sich in der digitalen Wirtschaft zu behaupten.
Häufig gestellte Fragen
To access the course materials, assignments and to earn a Certificate, you will need to purchase the Certificate experience when you enroll in a course. You can try a Free Trial instead, or apply for Financial Aid. The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you purchase a Certificate you get access to all course materials, including graded assignments. Upon completing the course, your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile.
You will be eligible for a full refund until two weeks after your payment date, or (for courses that have just launched) until two weeks after the first session of the course begins, whichever is later. You cannot receive a refund once youâve earned a Course Certificate, even if you complete the course within the two-week refund period. See our full refund policy.
Weitere Fragen
Finanzielle UnterstĂźtzung verfĂźgbar,