This course covers linear algebra, probability, and optimization. It begins with systems of equations, matrix operations, vector spaces, and eigenvalues. Advanced topics include Cholesky and singular value decomposition. Probability modules address Bayes' theorem, Gaussian distribution, and inference techniques. The course concludes with model selection methods and an introduction to optimization.

Sparen Sie $160 für die Barrierefreiheit von mehr als 10.000 Programmen - ein wahres Urlaubsvergnügen. Jetzt sparen.


Kompetenzen, die Sie erwerben
- Kategorie: Bayesian Statistics
- Kategorie: Statistical Modeling
- Kategorie: Mathematical Modeling
- Kategorie: Applied Mathematics
- Kategorie: Statistical Methods
- Kategorie: General Mathematics
- Kategorie: Statistical Machine Learning
- Kategorie: Statistical Inference
- Kategorie: Probability
- Kategorie: Algebra
- Kategorie: Machine Learning
- Kategorie: Probability & Statistics
- Kategorie: Linear Algebra
- Kategorie: Mathematics and Mathematical Modeling
- Kategorie: Probability Distribution
Wichtige Details

Zu Ihrem LinkedIn-Profil hinzufügen
6 Aufgaben
Erfahren Sie, wie Mitarbeiter führender Unternehmen gefragte Kompetenzen erwerben.

In diesem Kurs gibt es 4 Module
This module provides a foundational understanding of linear algebra concepts essential for statistical learning and algorithms. You will explore the principles of linear systems, matrix operations, vector spaces, orthogonality, and projections. These topics will lay the groundwork for understanding more advanced machine learning and statistical modeling techniques.
Das ist alles enthalten
4 Videos20 Lektüren3 Aufgaben1 App-Element1 Diskussionsthema
This module covers essential linear algebra concepts, focusing on linear mappings, eigenvectors, eigenvalues, Cholesky decomposition, and singular value decomposition. You'll learn to apply linear mappings, interpret eigenvectors and eigenvalues, and explore the Cholesky decomposition for symmetric, positive definite matrices. Additionally, you'll delve into singular value decomposition and its applications. The lessons include linear independence, linear mappings, eigenvalues and eigenvectors, Cholesky decomposition, and singular value decomposition, providing a comprehensive understanding of these critical topics.
Das ist alles enthalten
2 Videos11 Lektüren1 Aufgabe1 App-Element
This module focuses on essential probability concepts and their applications in machine learning. You will explore the sum rule, product rule, and Bayes' theorem, understanding how these principles are applied to solve complex problems. Additionally, you'll learn to apply Bayesian inference to estimate hidden variables from observed data, enhancing your ability to make informed predictions and decisions in machine learning contexts. These topics will provide a solid foundation for understanding and implementing probabilistic models in various machine learning scenarios.
Das ist alles enthalten
11 Lektüren1 Aufgabe
This module covers key techniques for enhancing machine learning models. You will learn to minimize the error or loss of a model through various optimization methods. Additionally, you'll explore different cross-validation techniques to assess model performance and generalizability. By examining various optimization techniques, you'll improve model accuracy and efficiency. These topics will equip you with the skills to fine-tune and validate your machine learning models effectively.
Das ist alles enthalten
15 Lektüren1 Aufgabe
Dozent

Mehr von Mechanical Engineering entdecken
Status: Kostenloser TestzeitraumJohns Hopkins University
Status: Kostenloser TestzeitraumCoursera
Status: Kostenloser TestzeitraumJohns Hopkins University
Status: VorschauNortheastern University
Warum entscheiden sich Menschen für Coursera für ihre Karriere?





Neue Karrieremöglichkeiten mit Coursera Plus
Unbegrenzter Zugang zu 10,000+ Weltklasse-Kursen, praktischen Projekten und berufsqualifizierenden Zertifikatsprogrammen - alles in Ihrem Abonnement enthalten
Bringen Sie Ihre Karriere mit einem Online-Abschluss voran.
Erwerben Sie einen Abschluss von erstklassigen Universitäten – 100 % online
Schließen Sie sich mehr als 3.400 Unternehmen in aller Welt an, die sich für Coursera for Business entschieden haben.
Schulen Sie Ihre Mitarbeiter*innen, um sich in der digitalen Wirtschaft zu behaupten.
Häufig gestellte Fragen
To access the course materials, assignments and to earn a Certificate, you will need to purchase the Certificate experience when you enroll in a course. You can try a Free Trial instead, or apply for Financial Aid. The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you purchase a Certificate you get access to all course materials, including graded assignments. Upon completing the course, your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile.
Yes. In select learning programs, you can apply for financial aid or a scholarship if you can’t afford the enrollment fee. If fin aid or scholarship is available for your learning program selection, you’ll find a link to apply on the description page.
Weitere Fragen
Finanzielle Unterstützung verfügbar,
enthalten
