By the end of this course, learners will be able to identify machine learning foundations, apply statistical concepts, evaluate probability distributions, and implement core algorithms in R. Participants will gain practical skills in data manipulation, regression, classification, decision trees, and ensemble learning, building a comprehensive understanding of both theory and application.

Sparen Sie $160 für die Barrierefreiheit von mehr als 10.000 Programmen - ein wahres Urlaubsvergnügen. Jetzt sparen.


Machine Learning with R: Build, Analyze & Predict
Dieser Kurs ist Teil von Spezialisierung für AI Machine Learning with R & Python Projects

Dozent: EDUCBA
Bei
enthalten
Was Sie lernen werden
Apply ML foundations, probability, and statistical concepts in R.
Implement regression, classification, and decision tree models.
Use ensemble methods like random forests and boosting in R.
Kompetenzen, die Sie erwerben
- Kategorie: Exploratory Data Analysis
- Kategorie: Statistical Methods
- Kategorie: Applied Machine Learning
- Kategorie: Statistical Modeling
- Kategorie: Data Analysis
- Kategorie: Machine Learning
- Kategorie: Predictive Modeling
- Kategorie: R Programming
- Kategorie: Random Forest Algorithm
- Kategorie: Statistical Analysis
- Kategorie: Supervised Learning
- Kategorie: Regression Analysis
- Kategorie: Probability Distribution
- Kategorie: Data Manipulation
- Kategorie: Decision Tree Learning
Wichtige Details

Zu Ihrem LinkedIn-Profil hinzufügen
Oktober 2025
13 Aufgaben
Erfahren Sie, wie Mitarbeiter führender Unternehmen gefragte Kompetenzen erwerben.

Erweitern Sie Ihre Fachkenntnisse
- Lernen Sie neue Konzepte von Branchenexperten
- Gewinnen Sie ein Grundverständnis bestimmter Themen oder Tools
- Erwerben Sie berufsrelevante Kompetenzen durch praktische Projekte
- Erwerben Sie ein Berufszertifikat zur Vorlage

In diesem Kurs gibt es 4 Module
This module introduces the foundations of Machine Learning and the R programming environment. Learners will explore the key concepts of supervised and unsupervised learning, regression versus classification, and the practical steps to apply machine learning to real-world problems. In addition, the module covers essential R programming skills for data manipulation, vector operations, and dataset preparation, ensuring a strong foundation for statistical and machine learning tasks.
Das ist alles enthalten
10 Videos3 Aufgaben
This module covers statistical concepts essential for building and interpreting machine learning models. Learners will review core measures such as variance, correlation, R-squared, and standard error while identifying common statistical mistakes. The module also extends to advanced topics including linear regression, statistical assumptions, and interpretation of outputs, equipping learners with the ability to analyze data with confidence.
Das ist alles enthalten
12 Videos3 Aufgaben
This module focuses on probability distributions and hypothesis testing, both critical to statistical inference. Learners will examine discrete and continuous probability distributions, variance-covariance structures, and hypothesis rejection criteria. The module also introduces classical distributions such as t, chi-square, and Poisson, along with visualization techniques for testing data assumptions and interpreting results.
Das ist alles enthalten
12 Videos3 Aufgaben
This module introduces core machine learning algorithms, focusing on regression, classification, decision trees, and ensemble methods. Learners will explore K-Nearest Neighbors (KNN), generalized regression models, decision tree classifiers, and the use of pruning to improve performance. The module concludes with ensemble learning techniques, including random forests and boosting, for building powerful predictive models.
Das ist alles enthalten
17 Videos4 Aufgaben
Erwerben Sie ein Karrierezertifikat.
Fügen Sie dieses Zeugnis Ihrem LinkedIn-Profil, Lebenslauf oder CV hinzu. Teilen Sie sie in Social Media und in Ihrer Leistungsbeurteilung.
Mehr von Machine Learning entdecken
Status: Kostenloser Testzeitraum
Status: Vorschau
Status: Kostenloser Testzeitraum
Warum entscheiden sich Menschen für Coursera für ihre Karriere?





Neue Karrieremöglichkeiten mit Coursera Plus
Unbegrenzter Zugang zu 10,000+ Weltklasse-Kursen, praktischen Projekten und berufsqualifizierenden Zertifikatsprogrammen - alles in Ihrem Abonnement enthalten
Bringen Sie Ihre Karriere mit einem Online-Abschluss voran.
Erwerben Sie einen Abschluss von erstklassigen Universitäten – 100 % online
Schließen Sie sich mehr als 3.400 Unternehmen in aller Welt an, die sich für Coursera for Business entschieden haben.
Schulen Sie Ihre Mitarbeiter*innen, um sich in der digitalen Wirtschaft zu behaupten.
Häufig gestellte Fragen
To access the course materials, assignments and to earn a Certificate, you will need to purchase the Certificate experience when you enroll in a course. You can try a Free Trial instead, or apply for Financial Aid. The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile.
Yes. In select learning programs, you can apply for financial aid or a scholarship if you can’t afford the enrollment fee. If fin aid or scholarship is available for your learning program selection, you’ll find a link to apply on the description page.
Weitere Fragen
Finanzielle Unterstützung verfügbar,


