This foundational course equips learners with the conceptual knowledge and practical skills needed to perform cluster analysis—an essential unsupervised machine learning technique—using SPSS. Through a blend of theoretical exploration and hands-on implementation, learners will define, differentiate, apply, and evaluate key clustering methodologies, including hierarchical methods, k-means clustering, and Two-Step cluster analysis.

il reste 4 jours : Bénéficiez d'un coup de pouce pour le Black Friday avec 160 $ de réduction sur plus de 10 000 programmes.


(15 avis)
Ce que vous apprendrez
Explain clustering concepts and differentiate hierarchical, k-means, and Two-Step methods.
Apply preprocessing and clustering techniques in SPSS to segment real-world data.
Evaluate cluster quality using BIC/AIC criteria, dendrograms, and silhouette scores.
Compétences que vous acquerrez
- Catégorie : Machine Learning
- Catégorie : Statistical Analysis
- Catégorie : Applied Machine Learning
- Catégorie : Unsupervised Learning
- Catégorie : Data Cleansing
- Catégorie : Data Analysis
- Catégorie : Machine Learning Algorithms
- Catégorie : SPSS
- Catégorie : Data Visualization Software
- Catégorie : Statistical Methods
Détails à connaître

Ajouter à votre profil LinkedIn
août 2025
7 devoirs
Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées

Il y a 2 modules dans ce cours
This module introduces the fundamental principles of cluster analysis, a core technique in unsupervised machine learning. Learners will explore the conceptual basis of clustering, understand how clustering groups data points based on similarity, and investigate widely used clustering techniques including hierarchical clustering and k-means. Emphasis is placed on understanding how these methods operate, their practical applications, and the tools used to visualize and evaluate clustering results. By the end of this module, learners will gain a strong conceptual and technical foundation in clustering approaches, preparing them for more advanced machine learning techniques and real-world data segmentation tasks.
Inclus
8 vidéos4 devoirs
This module focuses on the implementation and interpretation of cluster analysis techniques using SPSS. Learners will explore practical workflows involving Two-Step clustering and K-means clustering, including the evaluation of clustering quality and methods for handling missing data. Through hands-on demonstrations, students will gain experience with SPSS output interfaces, learn to navigate clustering diagnostics, and apply data preprocessing strategies such as listwise and pairwise deletion. The module equips learners with practical tools to translate unsupervised machine learning concepts into real-world analytical outputs.
Inclus
4 vidéos3 devoirs
En savoir plus sur Machine Learning
Statut : Prévisualisation
Statut : Essai gratuitUniversity of Colorado Boulder
Statut : Essai gratuitUniversity of California, Irvine
Statut : Essai gratuitUniversity of Illinois Urbana-Champaign
Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?




Avis des étudiants
15 avis
- 5 stars
93,33 %
- 4 stars
6,66 %
- 3 stars
0 %
- 2 stars
0 %
- 1 star
0 %
Affichage de 3 sur 15
Révisé le 31 oct. 2025
Showed strong command of SPSS tools and workflows for performing hierarchical and K-means clustering.
Révisé le 21 nov. 2025
Overall, the course is good for learners who want a quick, hands-on start with clustering in SPSS, but those looking for deeper insights might feel it leaves them wanting more.
Révisé le 16 oct. 2025
The instructor's teaching style is engaging and easy to follow.

Ouvrez de nouvelles portes avec Coursera Plus
Accès illimité à 10,000+ cours de niveau international, projets pratiques et programmes de certification prêts à l'emploi - tous inclus dans votre abonnement.
Faites progresser votre carrière avec un diplôme en ligne
Obtenez un diplôme auprès d’universités de renommée mondiale - 100 % en ligne
Rejoignez plus de 3 400 entreprises mondiales qui ont choisi Coursera pour les affaires
Améliorez les compétences de vos employés pour exceller dans l’économie numérique
Foire Aux Questions
To access the course materials, assignments and to earn a Certificate, you will need to purchase the Certificate experience when you enroll in a course. You can try a Free Trial instead, or apply for Financial Aid. The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you purchase a Certificate you get access to all course materials, including graded assignments. Upon completing the course, your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile.
Yes. In select learning programs, you can apply for financial aid or a scholarship if you can’t afford the enrollment fee. If fin aid or scholarship is available for your learning program selection, you’ll find a link to apply on the description page.
Plus de questions
Aide financière disponible,


