L&T EduTech
Air Conditioning Equipment Selection, Design and Sizing
L&T EduTech

Air Conditioning Equipment Selection, Design and Sizing

Included with Coursera Plus

Course

Gain insight into a topic and learn the fundamentals

Intermediate level

Recommended experience

13 hours (approximately)
Flexible schedule
Learn at your own pace

Details to know

Shareable certificate

Add to your LinkedIn profile

Recently updated!

June 2024

Assessments

6 assignments

Course

Gain insight into a topic and learn the fundamentals

Intermediate level

Recommended experience

13 hours (approximately)
Flexible schedule
Learn at your own pace

See how employees at top companies are mastering in-demand skills

Placeholder

Build your subject-matter expertise

This course is part of the Design of Ventilation& Air conditioning System for Buildings Specialization
When you enroll in this course, you'll also be enrolled in this Specialization.
  • Learn new concepts from industry experts
  • Gain a foundational understanding of a subject or tool
  • Develop job-relevant skills with hands-on projects
  • Earn a shareable career certificate
Placeholder
Placeholder

Earn a career certificate

Add this credential to your LinkedIn profile, resume, or CV

Share it on social media and in your performance review

Placeholder

There are 6 modules in this course

High Side Equipment’s play a crucial role in HVAC (Heating, Ventilation, and Air Conditioning) systems, contributing to efficient temperature control within various facilities. These systems encompass diverse components, each designed for specific functions. Among them, chillers stand out as key components. These devices cool water or other fluids to regulate air temperatures. Chillers are classified based on their mechanism, such as absorption, centrifugal, or reciprocating, tailoring them to specific operational requirements. Cooling towers complement the chiller's function by dissipating heat from the system, promoting optimal efficiency. These towers come in various types, including natural draft, forced draft, and induced draft, each with distinct cooling characteristics and applications. Air Handling Units (AHUs) constitute another vital aspect of HVAC system. These units regulate and circulate air, ensuring a comfortable indoor environment. Their classification depends on the handling method, such as single-zone, dual-zone, or multi-zone units, adapting to diverse spatial requirements. Fan Coil Units (FCUs) further refine air temperature control, combining a fan and a heat exchanger. FCUs can be classified based on their mounting type, including horizontal, vertical, or ceiling-mounted units, catering to specific architectural and spatial constraints. The need for an efficient Air Distribution System is paramount in HVAC, ensuring the even distribution of conditioned air. This system comprises components like ductwork, air outlets, and diffusers. Ductwork, a critical element, comes in various types, such as rectangular, round, or spiral, tailored to diverse applications. Duct Accessories play a supporting role, enhancing the performance and efficiency of the overall air distribution system. These accessories include dampers, silencers, and grilles, each serving specific functions in controlling airflow and noise. In the realm of pipe accessories, components like valves, pumps, and expansion joints play vital roles in fluid distribution within HVAC systems. They enable precise control of water flow and pressure, ensuring optimal performance and longevity. In summary, a comprehensive understanding of these components and systems is essential for designing, installing, and maintaining efficient HVAC systems that meet the diverse needs of different environments.

What's included

18 videos1 reading1 assignment

Air Handling Units (AHUs) play a pivotal role in HVAC systems, responsible for conditioning and circulating air within a controlled environment. These units consist of several major components, each contributing to their functionality. The key components include filters, heating and cooling coils, humidifiers, fans, dampers, and controls. Filters remove impurities from the air, coils regulate temperature, humidifiers control moisture levels, fans circulate air, dampers adjust airflow, and controls ensure precise system operation. AHUs are categorized based on air flow and configuration. In terms of air flow, there are constant air volume (CAV) units that maintain a consistent airflow and variable air volume (VAV) units that adjust airflow based on demand. Regarding configuration, AHUs can be horizontal, vertical, or modular, providing flexibility in installation. Another classification considers the application of AHUs. Common types include rooftop AHUs for outdoor installation, indoor AHUs for spaces with limited access, and air handling units specifically designed for critical environments like hospitals or laboratories. Air Handler Controls are integral to regulating and monitoring AHU performance. These controls manage temperature, humidity, and airflow, ensuring optimal conditions within the space served. AHUs must adhere to industry certifications, codes, and standards to guarantee compliance with safety and efficiency guidelines. When selecting an AHU, various factors come into play. It involves analyzing the specific requirements of the space, considering factors like air quality, temperature control, and energy efficiency. A well-designed AHU enhances indoor air quality, comfort, and overall system efficiency. Shifting focus to chilled water pumps, these are critical components in HVAC systems that circulate chilled water to remove heat from the building. Centrifugal pumps are commonly used, relying on the centrifugal force to move water. Positive displacement pumps, on the other hand, displace a specific volume of fluid with each rotation, providing precise control. Understanding fundamental pump terms and characteristics is crucial for efficient operation. This includes terms like head, flow rate, efficiency, and pump curves, all of which impact performance. Adjusting pump performance involves altering speed, impeller size, or system resistance, while pump selection parameters consider factors like system demand, pump type, and efficiency. Pump data sheets provide essential information for accurate selection and installation. Proper site installation ensures optimal pump performance and longevity, considering factors such as alignment, vibration control, and proper system integration. In summary, a comprehensive understanding of AHUs and chilled water pumps is essential for designing and maintaining efficient HVAC systems tailored to specific environmental needs.

What's included

16 videos1 assignment

In a Chilled Water Pumping System, the main components include chillers, pumps, piping, and terminal units, all working collaboratively to circulate chilled water for cooling purposes. The Piping and Pumping Arrangement outlines the layout and configuration of pipes and pumps to ensure efficient water circulation throughout the HVAC system. Different distribution schemes, such as Constant Primary Flow, Constant Primary and Secondary Variable Flow, and Primary Variable Flow, dictate the manner in which chilled water is distributed to various building zones. Constant Primary Flow systems maintain a consistent flow rate in the primary loop, adjusting secondary flow rates based on demand. Constant Primary and Secondary Variable Flow systems allow for variable flow rates in both primary and secondary loops, providing greater flexibility and energy efficiency. Primary Variable Flow systems adjust the flow rate in the primary loop based on demand, influencing the secondary flow rate accordingly. A summary of the Chilled Water Pumping System emphasizes the importance of selecting the appropriate distribution scheme to meet the specific needs of a building, balancing energy efficiency and performance. Understanding important terminologies in pump head calculations is crucial for system design. Static Head refers to the height difference between the pump and the highest point in the system, Dynamic Head accounts for the friction losses in pipes, and Total Pump Head is the sum of static and dynamic heads. Net Positive Suction Head (NPSH) is critical in preventing cavitation, and differentiates between Open Loop and Closed Loop Circuits. Piping Circuits in HVAC systems dictate the flow of chilled water, while Head Losses due to Pipe Friction, Pipe Fittings, Pipe Accessories, and Equipment Losses are factors influencing overall system performance. A Sample Calculation may involve determining pump head requirements based on system characteristics and requirements, ensuring an optimal and energy-efficient design. In conclusion, a comprehensive understanding of these components, distribution schemes, and terminologies is vital for designing, installing, and maintaining an efficient Chilled Water Pumping System in HVAC applications.

What's included

14 videos1 assignment

In a Chilled Water Pumping System, the main components include chillers, pumps, piping, and terminal units, all working collaboratively to circulate chilled water for cooling purposes. The Piping and Pumping Arrangement outlines the layout and configuration of pipes and pumps to ensure efficient water circulation throughout the HVAC system. Different distribution schemes, such as Constant Primary Flow, Constant Primary and Secondary Variable Flow, and Primary Variable Flow, dictate the manner in which chilled water is distributed to various building zones. Constant Primary Flow systems maintain a consistent flow rate in the primary loop, adjusting secondary flow rates based on demand. Constant Primary and Secondary Variable Flow systems allow for variable flow rates in both primary and secondary loops, providing greater flexibility and energy efficiency. Primary Variable Flow systems adjust the flow rate in the primary loop based on demand, influencing the secondary flow rate accordingly. A summary of the Chilled Water Pumping System emphasizes the importance of selecting the appropriate distribution scheme to meet the specific needs of a building, balancing energy efficiency and performance. Understanding important terminologies in pump head calculations is crucial for system design. Static Head refers to the height difference between the pump and the highest point in the system, Dynamic Head accounts for the friction losses in pipes, and Total Pump Head is the sum of static and dynamic heads. Net Positive Suction Head (NPSH) is critical in preventing cavitation, and differentiates between Open Loop and Closed Loop Circuits. Piping Circuits in HVAC systems dictate the flow of chilled water, while Head Losses due to Pipe Friction, Pipe Fittings, Pipe Accessories, and Equipment Losses are factors influencing overall system performance. A Sample Calculation may involve determining pump head requirements based on system characteristics and requirements, ensuring an optimal and energy-efficient design. In conclusion, a comprehensive understanding of these components, distribution schemes, and terminologies is vital for designing, installing, and maintaining an efficient Chilled Water Pumping System in HVAC applications.

What's included

13 videos1 assignment

Piping systems and design form the backbone of HVAC installations, ensuring the efficient transport of chilled water and condenser water. The introduction to piping systems encompasses the fundamental principles and considerations in designing these networks. Chilled water pipe sizing is a crucial aspect, covers the basics, including factors like flow rates, velocity, and insulation, pressure drop, pump head, and balancing. Condenser water pipe sizing explores the specific requirements for the pipes carrying water to the condenser of the chiller, emphasizing factors like temperature differentials and flow rates. Fittings and accessories play a vital role in Chilled Water Piping, affecting flow dynamics and system efficiency. The typical connections in Chilled Water Pipes are examined, highlighting common practices in joining and sealing these pipes. Transitioning to duct systems and design, an introduction sets the stage for understanding the role of ductwork in HVAC. Duct sizing methods are critical in ensuring the proper airflow for effective temperature control. Pressure losses in the Air Distribution System are explored, emphasizing the need to minimize resistance and optimize efficiency. Duct sizing do's and don'ts provide practical guidelines for designing duct systems, focusing on factors like velocity, friction, and noise control. Air terminal units, which regulate airflow into conditioned spaces, are discussed in terms of their selection and placement. Duct construction and support systems delve into the physical aspects of ductwork, including materials, insulation, and the structural elements supporting the ducts. Typical ductwork layouts showcase common configurations, considering factors like space constraints and airflow requirements. In summary, a comprehensive overview of piping and duct systems is essential for HVAC professionals. From sizing considerations to the selection of fittings and accessories, understanding the intricacies of these components ensures the successful design and implementation of efficient heating, ventilation, and air conditioning systems.

What's included

15 videos1 assignment

Static pressure is a fundamental parameter in HVAC systems, representing the pressure exerted by air on the walls of ducts and other components. Its importance lies in its role as a key indicator of system performance, influencing the airflow and efficiency of the entire HVAC system. Understanding and managing static pressure is crucial for maintaining optimal conditions in a given space. Pressure losses in a duct system encompass various types, each affecting the overall static pressure. These losses can occur through friction, duct fittings, accessories, and other elements. The Loss Coefficient for Duct Fittings, explored in two parts, delves into the impact of bends, tees, and other fittings on pressure drop, aiding in the precise calculation of static pressure. The critical path in static pressure calculation identifies the most significant contributors to pressure losses, allowing HVAC professionals to prioritize adjustments for optimal system performance. Sample calculations, provide practical insights into determining pressure losses and ensuring efficient duct design. Shifting to insulation, the introduction emphasizes its role in mitigating heat transfer within HVAC systems. Fundamentals of heat transfer and associated terminologies provide the theoretical foundation for insulation design. Design objectives and considerations, covered through instructor-led sessions, guide professionals in achieving energy-efficient and thermally effective insulation solutions. Insulation material types and the ASHRAE thermal conductivity chart aid in selecting materials that align with specific project requirements. Weather protection and jacketing considerations ensure the durability and longevity of insulation systems. Different types of duct insulation are explored, taking into account factors such as temperature, moisture, and space constraints. The role of acoustics in HVAC applications highlights the importance of sound control in duct systems, ensuring comfortable and noise-free environments. In summary, a comprehensive understanding of static pressure, pressure losses, insulation principles, and acoustics is essential for designing and maintaining efficient HVAC systems. Practical calculations and instructor-led discussions contribute to the knowledge base required for successful implementation in diverse heating, ventilation, and air conditioning applications.

What's included

16 videos1 assignment

Instructor

Subject Matter Expert
L&T EduTech
67 Courses26,166 learners

Offered by

L&T EduTech

Recommended if you're interested in Mechanical Engineering

Why people choose Coursera for their career

Felipe M.
Learner since 2018
"To be able to take courses at my own pace and rhythm has been an amazing experience. I can learn whenever it fits my schedule and mood."
Jennifer J.
Learner since 2020
"I directly applied the concepts and skills I learned from my courses to an exciting new project at work."
Larry W.
Learner since 2021
"When I need courses on topics that my university doesn't offer, Coursera is one of the best places to go."
Chaitanya A.
"Learning isn't just about being better at your job: it's so much more than that. Coursera allows me to learn without limits."
Placeholder

Open new doors with Coursera Plus

Unlimited access to 7,000+ world-class courses, hands-on projects, and job-ready certificate programs - all included in your subscription

Advance your career with an online degree

Earn a degree from world-class universities - 100% online

Join over 3,400 global companies that choose Coursera for Business

Upskill your employees to excel in the digital economy

Frequently asked questions