This course provides a practical and theoretical tour of the most essential probability distributions that are most often used for modern machine learning and data science. We will explore the fundamental building blocks for modeling discrete events (Bernoulli, binomial, multinomial distributions) and continuous quantities (Gaussian distribution) and discuss the implications of Bayes Theorem. Moreover, we will discuss two perspectives in estimating the model parameters, namely Bayesian perspective and frequentist perspective and learn how to reason about uncertainty in model parameters themselves using the powerful beta and Dirichlet distributions for Bayesian perspective and maximum likelihood estimate for frequentist perspective. By the end of this course, you will have a fluent command of the mathematical "language" needed to understand, build, and interpret probabilistic models.

5 days left: Get a Black Friday boost with $160 off 10,000+ programs. Save now.


Foundations for Machine Learning
This course is part of Practical Machine Learning: Foundations to Neural Networks Specialization

Instructor: Peter Chin
Included with
Recommended experience
What you'll learn
How to model data with key distributions, apply Bayes and MLE, and quantify uncertainty via conjugate priors.
Skills you'll gain
Details to know

Add to your LinkedIn profile
November 2025
26 assignments
See how employees at top companies are mastering in-demand skills

Build your subject-matter expertise
- Learn new concepts from industry experts
- Gain a foundational understanding of a subject or tool
- Develop job-relevant skills with hands-on projects
- Earn a shareable career certificate

There are 8 modules in this course
What's included
1 video2 readings
What's included
3 videos2 readings4 assignments2 ungraded labs
What's included
4 videos1 reading5 assignments1 ungraded lab
What's included
4 videos2 readings5 assignments3 ungraded labs
What's included
3 videos1 reading4 assignments2 ungraded labs
What's included
1 video2 readings2 assignments3 ungraded labs
What's included
6 videos1 reading5 assignments3 ungraded labs
What's included
1 reading1 assignment
Earn a career certificate
Add this credential to your LinkedIn profile, resume, or CV. Share it on social media and in your performance review.
Instructor

Offered by
Explore more from Algorithms

Dartmouth College

Dartmouth College
Why people choose Coursera for their career





Open new doors with Coursera Plus
Unlimited access to 10,000+ world-class courses, hands-on projects, and job-ready certificate programs - all included in your subscription
Advance your career with an online degree
Earn a degree from world-class universities - 100% online
Join over 3,400 global companies that choose Coursera for Business
Upskill your employees to excel in the digital economy
Frequently asked questions
To access the course materials, assignments and to earn a Certificate, you will need to purchase the Certificate experience when you enroll in a course. You can try a Free Trial instead, or apply for Financial Aid. The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile.
Yes. In select learning programs, you can apply for financial aid or a scholarship if you can’t afford the enrollment fee. If fin aid or scholarship is available for your learning program selection, you’ll find a link to apply on the description page.
More questions
Financial aid available,

