This course provides a brief introduction to the theory and practice of supervised machine learning, the discipline of teaching computers to make predictions from labeled data. We begin with a well-known model of linear regression, moving from fundamental principles to the advanced regularization techniques essential for building robust models. We then transition from regression to classification, exploring two major paradigms for separating data: discriminative models and generative models. The course concludes in learning how to critically evaluate and compare classifier performance using industry-standard tools such as the ROC Curve. Upon completion, you will have a strong command of the core principles that underpin modern predictive modeling.

5 days left: Get a Black Friday boost with $160 off 10,000+ programs. Save now.


Machine Learning Fundamentals
This course is part of Practical Machine Learning: Foundations to Neural Networks Specialization

Instructor: Peter Chin
Included with
Recommended experience
What you'll learn
How to build, regularize, and evaluate supervised models, moving from linear regression to classifiers, using cross-validation and ROC/AUC.
Skills you'll gain
Details to know

Add to your LinkedIn profile
November 2025
28 assignments
See how employees at top companies are mastering in-demand skills

Build your subject-matter expertise
- Learn new concepts from industry experts
- Gain a foundational understanding of a subject or tool
- Develop job-relevant skills with hands-on projects
- Earn a shareable career certificate

There are 7 modules in this course
What's included
1 video1 reading
What's included
4 videos1 reading5 assignments2 ungraded labs
What's included
6 videos1 reading7 assignments2 ungraded labs
What's included
6 videos1 reading7 assignments2 ungraded labs
What's included
6 videos1 reading6 assignments2 ungraded labs
What's included
1 video1 reading2 assignments1 ungraded lab
What's included
1 reading1 assignment
Earn a career certificate
Add this credential to your LinkedIn profile, resume, or CV. Share it on social media and in your performance review.
Instructor

Offered by
Explore more from Algorithms

Dartmouth College

Dartmouth College
Why people choose Coursera for their career





Open new doors with Coursera Plus
Unlimited access to 10,000+ world-class courses, hands-on projects, and job-ready certificate programs - all included in your subscription
Advance your career with an online degree
Earn a degree from world-class universities - 100% online
Join over 3,400 global companies that choose Coursera for Business
Upskill your employees to excel in the digital economy
Frequently asked questions
To access the course materials, assignments and to earn a Certificate, you will need to purchase the Certificate experience when you enroll in a course. You can try a Free Trial instead, or apply for Financial Aid. The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile.
Yes. In select learning programs, you can apply for financial aid or a scholarship if you can’t afford the enrollment fee. If fin aid or scholarship is available for your learning program selection, you’ll find a link to apply on the description page.
More questions
Financial aid available,

