This beginner-friendly course introduces learners to Seaborn in Python, a powerful library built on Matplotlib for statistical data visualization. Designed with a structured, hands-on approach, the course guides learners from foundational relational plots to advanced categorical and statistical visualizations.



Seaborn with Python: Data Visualization for Beginners
This course is part of Seaborn Python Data Visualization & Analysis Specialization

Instructor: EDUCBA
Access provided by Iran University of Science and Technology
What you'll learn
Construct scatter, line, and faceted relational plots to analyze data trends.
Design and interpret categorical plots such as box, violin, and bar charts.
Apply Seaborn’s figure-level functions to create clear, multi-variable insights.
Skills you'll gain
Details to know

Add to your LinkedIn profile
7 assignments
August 2025
See how employees at top companies are mastering in-demand skills

Build your subject-matter expertise
- Learn new concepts from industry experts
- Gain a foundational understanding of a subject or tool
- Develop job-relevant skills with hands-on projects
- Earn a shareable career certificate

There are 2 modules in this course
This module introduces learners to the fundamentals of Seaborn data visualization in Python, focusing on creating scatter plots, line plots, and faceted relational plots. Students will explore how Seaborn simplifies statistical graphics by enhancing Matplotlib with high-level functions and visually appealing themes. Through practical examples, learners will gain hands-on experience in visualizing statistical relationships, applying color maps, customizing markers and sizes, and leveraging FacetGrid for multi-variable analysis. By the end of this module, students will be able to construct, interpret, and analyze relational plots to better understand trends, patterns, and relationships in datasets.
What's included
6 videos1 reading3 assignments1 plugin
This module focuses on Seaborn’s categorical and statistical plotting functions to explore distributions, frequency counts, and statistical estimates across categories. Learners will progress from simple categorical scatterplots to advanced statistical visualizations such as boxenplots, violin plots, barplots, swarmplots, stripplots, and catplots. Through hands-on practice, students will learn how to summarize data, highlight confidence intervals, and leverage figure-level functions like catplot() for multi-faceted comparisons. By the end of this module, learners will be able to apply Seaborn to effectively analyze and visualize categorical datasets with precision and clarity.
What's included
11 videos4 assignments
Earn a career certificate
Add this credential to your LinkedIn profile, resume, or CV. Share it on social media and in your performance review.
Why people choose Coursera for their career








