By the end of this course, learners will be able to design, build, train, and evaluate Convolutional Neural Networks (CNNs) using Python, gaining hands-on experience in one of the most in-demand deep learning skills. You will learn to set up both local and cloud-based environments, preprocess and augment image datasets, implement CNN architectures, and assess model accuracy and performance.

Master CNNs with Python: Build, Train & Evaluate Models

Master CNNs with Python: Build, Train & Evaluate Models
This course is part of Deep Learning with Python: CNN, ANN & RNN Specialization

Instructor: EDUCBA
Access provided by Novartis
19 reviews
What you'll learn
Explain CNN fundamentals and apply Python for model building.
Preprocess and augment image datasets for training workflows.
Design, implement, and evaluate CNNs for image classification.
Skills you'll gain
Details to know

Add to your LinkedIn profile
7 assignments
October 2025
See how employees at top companies are mastering in-demand skills

Build your subject-matter expertise
- Learn new concepts from industry experts
- Gain a foundational understanding of a subject or tool
- Develop job-relevant skills with hands-on projects
- Earn a shareable career certificate

There are 2 modules in this course
This module introduces learners to the essential foundations of Convolutional Neural Networks (CNNs) in Python, covering project setup, CNN architecture, coding, data preprocessing, and model evaluation. By the end, learners will be equipped to design, implement, and test CNN models for real-world image classification tasks.
What's included
9 videos3 assignments
What's included
7 videos4 assignments
Earn a career certificate
Add this credential to your LinkedIn profile, resume, or CV. Share it on social media and in your performance review.
Why people choose Coursera for their career

Felipe M.

Jennifer J.

Larry W.

Chaitanya A.
Learner reviews
- 5 stars
78.94%
- 4 stars
15.78%
- 3 stars
0%
- 2 stars
5.26%
- 1 star
0%
Showing 3 of 19
Reviewed on Dec 27, 2025
Beginner-friendly course on CNNs. It helped me understand architecture design, model training, and evaluation with confidence.
Reviewed on Jan 4, 2026
From theory to deployment-ready models — this course covers the full lifecycle of professional CNN development exceptionally well.
Reviewed on Jan 10, 2026
Exceptional depth without confusion; perfect for mastering CNN training and optimization techniques.





