This hands-on course guides learners through the complete lifecycle of predictive modeling, using a real-world banking use case to forecast term deposit subscriptions. Learners will begin by defining a business problem, analyzing and interpreting raw data through Exploratory Data Analysis (EDA), and applying data preparation techniques such as imputation and variable selection.

Discover new skills with $120 off courses from industry experts. Save now.


Was Sie lernen werden
Perform EDA and prepare banking data using imputation and variable selection.
Build predictive models with IV analysis, binning, and multicollinearity checks.
Evaluate models using KS, AUC, Lift, and deploy them in simulated production.
Kompetenzen, die Sie erwerben
- Kategorie: Data Validation
- Kategorie: Data Modeling
- Kategorie: Statistical Analysis
- Kategorie: Application Deployment
- Kategorie: Classification And Regression Tree (CART)
Wichtige Details

Zu Ihrem LinkedIn-Profil hinzufügen
August 2025
8 Aufgaben
Erfahren Sie, wie Mitarbeiter führender Unternehmen gefragte Kompetenzen erwerben.

In diesem Kurs gibt es 2 Module
This module introduces learners to the foundational steps of building a predictive model in a real-world banking context. It begins by clearly defining the business problem of predicting customer subscription to a term deposit product. The module then guides learners through understanding the dataset, exploring key variables using Exploratory Data Analysis (EDA), and preparing the data for modeling by handling missing values and selecting relevant features. By the end of the module, learners will be equipped with essential data preprocessing skills and the ability to frame analytical problems for machine learning applications.
Das ist alles enthalten
9 Videos4 Aufgaben
This module equips learners with the tools and techniques required to build, assess, and improve predictive models. It begins with the development of models using Information Value and multicollinearity checks to select the right variables. Learners then explore techniques to assess model performance using ranking tables, the Kolmogorov-Smirnov (KS) statistic, AUC, and Lift metrics. The module concludes with optimization strategies such as monotonicity adjustment and decision tree refinement, followed by validation and deployment of the model to unseen datasets. By the end of the module, learners will be proficient in developing, evaluating, and preparing models for production environments.
Das ist alles enthalten
9 Videos4 Aufgaben
Erwerben Sie ein Karrierezertifikat.
Fügen Sie dieses Zeugnis Ihrem LinkedIn-Profil, Lebenslauf oder CV hinzu. Teilen Sie sie in Social Media und in Ihrer Leistungsbeurteilung.
Mehr von Data Analysis entdecken
- Status: Kostenloser Testzeitraum
University of Colorado Boulder
- Status: Kostenloser Testzeitraum
University of California, Irvine
- Status: Vorschau
- Status: Kostenloser Testzeitraum
University of Minnesota
Warum entscheiden sich Menschen für Coursera für ihre Karriere?





Neue Karrieremöglichkeiten mit Coursera Plus
Unbegrenzter Zugang zu 10,000+ Weltklasse-Kursen, praktischen Projekten und berufsqualifizierenden Zertifikatsprogrammen - alles in Ihrem Abonnement enthalten
Bringen Sie Ihre Karriere mit einem Online-Abschluss voran.
Erwerben Sie einen Abschluss von erstklassigen Universitäten – 100 % online
Schließen Sie sich mehr als 3.400 Unternehmen in aller Welt an, die sich für Coursera for Business entschieden haben.
Schulen Sie Ihre Mitarbeiter*innen, um sich in der digitalen Wirtschaft zu behaupten.
Häufig gestellte Fragen
To access the course materials, assignments and to earn a Certificate, you will need to purchase the Certificate experience when you enroll in a course. You can try a Free Trial instead, or apply for Financial Aid. The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you purchase a Certificate you get access to all course materials, including graded assignments. Upon completing the course, your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile.
You will be eligible for a full refund until two weeks after your payment date, or (for courses that have just launched) until two weeks after the first session of the course begins, whichever is later. You cannot receive a refund once you’ve earned a Course Certificate, even if you complete the course within the two-week refund period. See our full refund policy.
Weitere Fragen
Finanzielle Unterstützung verfügbar,