Welcome to Advanced Machine Learning Techniques, where you'll dive deep into sophisticated approaches that power modern AI applications. We'll explore five key areas of advanced ML: ensemble methods for combining models, dimensionality reduction techniques for handling complex data, natural language processing for text analysis, reinforcement learning for decision-making systems, and automated machine learning for optimization. You'll work hands-on with industry-standard tools including Scikit-learn, XGBoost, NLTK, PyTorch, and MLflow, learning how to implement and optimize advanced algorithms in real-world scenarios.

Pour la fête du travail, profitez de 120 $ de réduction sur Coursera Plus. Débloquez l'accès à plus de 10 000 programmes. Économisez dès aujourd'hui.


Advanced Machine Learning Techniques
Ce cours fait partie de Machine Learning with Scikit-learn, PyTorch & Hugging Face Certificat Professionnel

Instructeur : Professionals from the Industry
Inclus avec
Expérience recommandée
Compétences que vous acquerrez
- Catégorie : Unsupervised Learning
Détails à connaître

Ajouter à votre profil LinkedIn
août 2025
22 devoirs
Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées

Élaborez votre expertise en Data Analysis
- Apprenez de nouveaux concepts auprès d'experts du secteur
- Acquérez une compréhension de base d'un sujet ou d'un outil
- Développez des compétences professionnelles avec des projets pratiques
- Obtenez un certificat professionnel partageable auprès de Coursera

Il y a 5 modules dans ce cours
In this module, you will establish ensemble learning techniques including bagging, boosting, and stacking. You'll learn how to combine multiple models to improve predictive performance and implement them using popular libraries like Scikit-learn, XGBoost, and LightGBM. Through hands-on practice, you'll evaluate ensemble models using cross-validation and learn to optimize their hyperparameters.
Inclus
16 vidéos8 lectures5 devoirs4 laboratoires non notés4 plugins
This module will help you master dimensionality reduction techniques to handle high-dimensional data effectively. You'll learn to apply Principal Component Analysis (PCA) to reduce dimensionality while retaining key features, use t-distributed Stochastic Neighbor Embedding (t-SNE) to visualize high-dimensional data in 2D/3D space for clustering and pattern recognition, and implement Uniform Manifold Approximation and Projection (UMAP) for efficient dimensionality reduction, leveraging its speed and structure-preserving properties.
Inclus
8 vidéos7 lectures4 devoirs3 laboratoires non notés1 plugin
In this module, you'll focus on natural language processing techniques from basic text preprocessing to advanced sentiment analysis. You'll learn how to preprocess text data using tokenization, stopword removal, and stemming/lemmatization with Natural Language Toolkit (NLTK) and spaCy. Through implementation of text classification using various techniques like Bag-of-Words, TF-IDF, and word embeddings, you'll gain practical experience in NLP tasks. You'll also train sentiment analysis models using Hugging Face Transformers and Scikit-learn.
Inclus
13 vidéos6 lectures5 devoirs4 laboratoires non notés2 plugins
Reinforcement Learning Description: In this module, you'll explore the fundamentals of reinforcement learning (RL), including Markov Decision Processes (MDPs) and reward-based learning. You'll understand the key components of RL systems and implement both policy-based and value-based learning techniques. Through practical examples and hands-on implementation, you'll discover how RL is applied in real-world scenarios like robotics, gaming, and finance.
Inclus
7 vidéos5 lectures4 devoirs3 laboratoires non notés1 plugin
This module focuses on automated machine learning techniques and model optimization. You'll learn to automate model selection and hyperparameter tuning using Auto-sklearn and GridSearchCV, and optimize models using MLflow for experiment tracking and reproducibility. You'll also explore Bayesian optimization techniques to improve model accuracy. The module concludes with a comprehensive capstone project that combines multiple techniques from throughout the course.
Inclus
10 vidéos6 lectures4 devoirs1 devoir de programmation3 laboratoires non notés1 plugin
Obtenez un certificat professionnel
Ajoutez ce titre à votre profil LinkedIn, à votre curriculum vitae ou à votre CV. Partagez-le sur les médias sociaux et dans votre évaluation des performances.
Instructeur

Offert par
En savoir plus sur Data Analysis
- Statut : Essai gratuit
Fractal Analytics
- Statut : Essai gratuit
Johns Hopkins University
- Statut : Essai gratuit
DeepLearning.AI
- Statut : Essai gratuit
Johns Hopkins University
Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?





Ouvrez de nouvelles portes avec Coursera Plus
Accès illimité à 10,000+ cours de niveau international, projets pratiques et programmes de certification prêts à l'emploi - tous inclus dans votre abonnement.
Faites progresser votre carrière avec un diplôme en ligne
Obtenez un diplôme auprès d’universités de renommée mondiale - 100 % en ligne
Rejoignez plus de 3 400 entreprises mondiales qui ont choisi Coursera pour les affaires
Améliorez les compétences de vos employés pour exceller dans l’économie numérique
Foire Aux Questions
To access the course materials, assignments and to earn a Certificate, you will need to purchase the Certificate experience when you enroll in a course. You can try a Free Trial instead, or apply for Financial Aid. The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Certificate, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile.
If you subscribed, you get a 7-day free trial during which you can cancel at no penalty. After that, we don’t give refunds, but you can cancel your subscription at any time. See our full refund policy.
Plus de questions
Aide financière disponible,