Edureka

Fine-Tuning & Optimizing Large Language Models

il reste 3 jours ! Acquérir des compétences de haut niveau avec Coursera Plus pour 199 $ (régulièrement 399 $). Économisez maintenant.

Ce cours n'est pas disponible en Français (France)

Nous sommes actuellement en train de le traduire dans plus de langues.
Edureka

Fine-Tuning & Optimizing Large Language Models

Edureka

Instructeur : Edureka

Inclus avec Coursera Plus

Obtenez un aperçu d'un sujet et apprenez les principes fondamentaux.
niveau Débutant

Expérience recommandée

1 semaine à compléter
à 10 heures par semaine
Planning flexible
Apprenez à votre propre rythme
Obtenez un aperçu d'un sujet et apprenez les principes fondamentaux.
niveau Débutant

Expérience recommandée

1 semaine à compléter
à 10 heures par semaine
Planning flexible
Apprenez à votre propre rythme

Ce que vous apprendrez

  • Apply transfer learning and parameter-efficient fine-tuning techniques (LoRA, adapters) to adapt pretrained LLMs for domain-specific tasks

  • Build end-to-end fine-tuning pipelines using Hugging Face Trainer APIs, including data preparation, hyperparameter tuning, and evaluation

  • Design and optimize LLM context using relevance selection, compression techniques, and scalable context engineering patterns

  • Optimize, deploy, monitor, and maintain fine-tuned LLMs using model compression, cloud inference, and continuous evaluation workflows

Compétences que vous acquerrez

  • Catégorie : Prompt Engineering
  • Catégorie : Hugging Face
  • Catégorie : Large Language Modeling
  • Catégorie : Transfer Learning
  • Catégorie : LLM Application
  • Catégorie : Model Evaluation
  • Catégorie : Context Management

Détails à connaître

Certificat partageable

Ajouter à votre profil LinkedIn

Récemment mis à jour !

janvier 2026

Évaluations

17 devoirs

Enseigné en Anglais

Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées

 logos de Petrobras, TATA, Danone, Capgemini, P&G et L'Oreal

Élaborez votre expertise du sujet

Ce cours fait partie de la Spécialisation LLM Engineering: Prompting, Fine-Tuning, Optimization & RAG
Lorsque vous vous inscrivez à ce cours, vous êtes également inscrit(e) à cette Spécialisation.
  • Apprenez de nouveaux concepts auprès d'experts du secteur
  • Acquérez une compréhension de base d'un sujet ou d'un outil
  • Développez des compétences professionnelles avec des projets pratiques
  • Obtenez un certificat professionnel partageable

Il y a 5 modules dans ce cours

Explore how pretrained language models are adapted for new tasks using transfer learning techniques. Learn how parameter-efficient methods such as LoRA and adapters enable lightweight fine-tuning, and how domain-specific data improves model performance. By the end, you’ll understand how to customize large models efficiently while minimizing training cost and complexity.

Inclus

13 vidéos5 lectures4 devoirs1 sujet de discussion

Dive into the end-to-end workflows required to fine-tune language models effectively. Learn how to prepare and tokenize datasets, configure training pipelines using the Hugging Face Trainer API, and optimize hyperparameters for better results. By the end, you’ll be able to train, evaluate, and publish fine-tuned models with confidence.

Inclus

10 vidéos4 lectures4 devoirs

Explore how context influences LLM behavior and performance. Learn the fundamentals of context engineering, manage token limits, apply context compression techniques, and design scalable context patterns. By the end, you’ll understand how to structure and optimize context for reliable and production-ready LLM applications.

Inclus

15 vidéos4 lectures4 devoirs

Learn how to optimize fine-tuned models for efficient inference and real-world deployment. Explore model compression techniques such as quantization and knowledge distillation, scaling strategies in cloud environments, and continuous monitoring practices. By the end, you’ll know how to deploy, scale, and maintain LLMs while controlling cost and performance.

Inclus

13 vidéos4 lectures4 devoirs

Apply everything you’ve learned through a hands-on practice project focused on fine-tuning and adapting an LLM end to end. Reflect on key concepts, complete the final graded assessment, and identify next steps for advancing your skills. By the end, you’ll be prepared to apply model adaptation techniques in real-world AI systems.

Inclus

1 vidéo1 lecture1 devoir1 sujet de discussion

Obtenez un certificat professionnel

Ajoutez ce titre à votre profil LinkedIn, à votre curriculum vitae ou à votre CV. Partagez-le sur les médias sociaux et dans votre évaluation des performances.

Instructeur

Edureka
Edureka
134 Cours 129 470 apprenants

Offert par

Edureka

En savoir plus sur Software Development

Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?

Felipe M.

Étudiant(e) depuis 2018
’Pouvoir suivre des cours à mon rythme à été une expérience extraordinaire. Je peux apprendre chaque fois que mon emploi du temps me le permet et en fonction de mon humeur.’

Jennifer J.

Étudiant(e) depuis 2020
’J'ai directement appliqué les concepts et les compétences que j'ai appris de mes cours à un nouveau projet passionnant au travail.’

Larry W.

Étudiant(e) depuis 2021
’Lorsque j'ai besoin de cours sur des sujets que mon université ne propose pas, Coursera est l'un des meilleurs endroits où se rendre.’

Chaitanya A.

’Apprendre, ce n'est pas seulement s'améliorer dans son travail : c'est bien plus que cela. Coursera me permet d'apprendre sans limites.’
Coursera Plus

Ouvrez de nouvelles portes avec Coursera Plus

Accès illimité à 10,000+ cours de niveau international, projets pratiques et programmes de certification prêts à l'emploi - tous inclus dans votre abonnement.

Faites progresser votre carrière avec un diplôme en ligne

Obtenez un diplôme auprès d’universités de renommée mondiale - 100 % en ligne

Rejoignez plus de 3 400 entreprises mondiales qui ont choisi Coursera pour les affaires

Améliorez les compétences de vos employés pour exceller dans l’économie numérique

Foire Aux Questions