This course provides a comprehensive, hands-on journey into model adaptation, fine-tuning, and context engineering for large language models (LLMs). It focuses on how pretrained models can be efficiently customized, optimized, and deployed to solve real-world NLP problems across diverse domains.

Fine-Tuning & Optimizing Large Language Models
il reste 3 jours ! Acquérir des compétences de haut niveau avec Coursera Plus pour 199 $ (régulièrement 399 $). Économisez maintenant.

Fine-Tuning & Optimizing Large Language Models
Ce cours fait partie de Spécialisation LLM Engineering: Prompting, Fine-Tuning, Optimization & RAG

Instructeur : Edureka
Inclus avec
Expérience recommandée
Ce que vous apprendrez
Apply transfer learning and parameter-efficient fine-tuning techniques (LoRA, adapters) to adapt pretrained LLMs for domain-specific tasks
Build end-to-end fine-tuning pipelines using Hugging Face Trainer APIs, including data preparation, hyperparameter tuning, and evaluation
Design and optimize LLM context using relevance selection, compression techniques, and scalable context engineering patterns
Optimize, deploy, monitor, and maintain fine-tuned LLMs using model compression, cloud inference, and continuous evaluation workflows
Compétences que vous acquerrez
- Catégorie : Prompt Engineering
- Catégorie : Hugging Face
- Catégorie : Large Language Modeling
- Catégorie : Transfer Learning
- Catégorie : LLM Application
- Catégorie : Model Evaluation
- Catégorie : Context Management
Détails à connaître

Ajouter à votre profil LinkedIn
janvier 2026
17 devoirs
Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées

Élaborez votre expertise du sujet
- Apprenez de nouveaux concepts auprès d'experts du secteur
- Acquérez une compréhension de base d'un sujet ou d'un outil
- Développez des compétences professionnelles avec des projets pratiques
- Obtenez un certificat professionnel partageable

Il y a 5 modules dans ce cours
Explore how pretrained language models are adapted for new tasks using transfer learning techniques. Learn how parameter-efficient methods such as LoRA and adapters enable lightweight fine-tuning, and how domain-specific data improves model performance. By the end, you’ll understand how to customize large models efficiently while minimizing training cost and complexity.
Inclus
13 vidéos5 lectures4 devoirs1 sujet de discussion
Dive into the end-to-end workflows required to fine-tune language models effectively. Learn how to prepare and tokenize datasets, configure training pipelines using the Hugging Face Trainer API, and optimize hyperparameters for better results. By the end, you’ll be able to train, evaluate, and publish fine-tuned models with confidence.
Inclus
10 vidéos4 lectures4 devoirs
Explore how context influences LLM behavior and performance. Learn the fundamentals of context engineering, manage token limits, apply context compression techniques, and design scalable context patterns. By the end, you’ll understand how to structure and optimize context for reliable and production-ready LLM applications.
Inclus
15 vidéos4 lectures4 devoirs
Learn how to optimize fine-tuned models for efficient inference and real-world deployment. Explore model compression techniques such as quantization and knowledge distillation, scaling strategies in cloud environments, and continuous monitoring practices. By the end, you’ll know how to deploy, scale, and maintain LLMs while controlling cost and performance.
Inclus
13 vidéos4 lectures4 devoirs
Apply everything you’ve learned through a hands-on practice project focused on fine-tuning and adapting an LLM end to end. Reflect on key concepts, complete the final graded assessment, and identify next steps for advancing your skills. By the end, you’ll be prepared to apply model adaptation techniques in real-world AI systems.
Inclus
1 vidéo1 lecture1 devoir1 sujet de discussion
Obtenez un certificat professionnel
Ajoutez ce titre à votre profil LinkedIn, à votre curriculum vitae ou à votre CV. Partagez-le sur les médias sociaux et dans votre évaluation des performances.
En savoir plus sur Software Development

Edureka

Edureka
Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?

Felipe M.

Jennifer J.

Larry W.

Chaitanya A.

Ouvrez de nouvelles portes avec Coursera Plus
Accès illimité à 10,000+ cours de niveau international, projets pratiques et programmes de certification prêts à l'emploi - tous inclus dans votre abonnement.
Faites progresser votre carrière avec un diplôme en ligne
Obtenez un diplôme auprès d’universités de renommée mondiale - 100 % en ligne
Rejoignez plus de 3 400 entreprises mondiales qui ont choisi Coursera pour les affaires
Améliorez les compétences de vos employés pour exceller dans l’économie numérique
Foire Aux Questions
This course teaches how to fine-tune, adapt, optimize, and deploy large language models for real-world applications.
It helps you move beyond prompt usage and gain hands-on expertise in production-grade LLM adaptation.
It is designed for ML engineers, AI practitioners, NLP developers, and data scientists.
Plus de questions
Aide financière disponible,

