By the end of this course, learners will be able to identify machine learning foundations, apply statistical concepts, evaluate probability distributions, and implement core algorithms in R. Participants will gain practical skills in data manipulation, regression, classification, decision trees, and ensemble learning, building a comprehensive understanding of both theory and application.



Machine Learning with R: Build, Analyze & Predict
Ce cours fait partie de Spécialisation AI Machine Learning with R & Python Projects

Instructeur : EDUCBA
Inclus avec 
Ce que vous apprendrez
Apply ML foundations, probability, and statistical concepts in R.
Implement regression, classification, and decision tree models.
Use ensemble methods like random forests and boosting in R.
Compétences que vous acquerrez
- Catégorie : Statistical Methods
- Catégorie : Data Manipulation
- Catégorie : Random Forest Algorithm
- Catégorie : Predictive Modeling
- Catégorie : Machine Learning
- Catégorie : Probability Distribution
- Catégorie : Statistical Modeling
- Catégorie : Applied Machine Learning
- Catégorie : Exploratory Data Analysis
- Catégorie : R Programming
- Catégorie : Regression Analysis
- Catégorie : Supervised Learning
- Catégorie : Data Analysis
- Catégorie : Decision Tree Learning
- Catégorie : Statistical Analysis
Détails à connaître

Ajouter à votre profil LinkedIn
octobre 2025
13 devoirs
Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées

Élaborez votre expertise du sujet
- Apprenez de nouveaux concepts auprès d'experts du secteur
- Acquérez une compréhension de base d'un sujet ou d'un outil
- Développez des compétences professionnelles avec des projets pratiques
- Obtenez un certificat professionnel partageable

Il y a 4 modules dans ce cours
This module introduces the foundations of Machine Learning and the R programming environment. Learners will explore the key concepts of supervised and unsupervised learning, regression versus classification, and the practical steps to apply machine learning to real-world problems. In addition, the module covers essential R programming skills for data manipulation, vector operations, and dataset preparation, ensuring a strong foundation for statistical and machine learning tasks.
Inclus
10 vidéos3 devoirs1 plugin
This module covers statistical concepts essential for building and interpreting machine learning models. Learners will review core measures such as variance, correlation, R-squared, and standard error while identifying common statistical mistakes. The module also extends to advanced topics including linear regression, statistical assumptions, and interpretation of outputs, equipping learners with the ability to analyze data with confidence.
Inclus
12 vidéos3 devoirs
This module focuses on probability distributions and hypothesis testing, both critical to statistical inference. Learners will examine discrete and continuous probability distributions, variance-covariance structures, and hypothesis rejection criteria. The module also introduces classical distributions such as t, chi-square, and Poisson, along with visualization techniques for testing data assumptions and interpreting results.
Inclus
12 vidéos3 devoirs
This module introduces core machine learning algorithms, focusing on regression, classification, decision trees, and ensemble methods. Learners will explore K-Nearest Neighbors (KNN), generalized regression models, decision tree classifiers, and the use of pruning to improve performance. The module concludes with ensemble learning techniques, including random forests and boosting, for building powerful predictive models.
Inclus
17 vidéos4 devoirs
Obtenez un certificat professionnel
Ajoutez ce titre à votre profil LinkedIn, à votre curriculum vitae ou à votre CV. Partagez-le sur les médias sociaux et dans votre évaluation des performances.
En savoir plus sur Machine Learning
Statut : Essai gratuit
Statut : Essai gratuitJohns Hopkins University
Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?





Ouvrez de nouvelles portes avec Coursera Plus
Accès illimité à 10,000+ cours de niveau international, projets pratiques et programmes de certification prêts à l'emploi - tous inclus dans votre abonnement.
Faites progresser votre carrière avec un diplôme en ligne
Obtenez un diplôme auprès d’universités de renommée mondiale - 100 % en ligne
Rejoignez plus de 3 400 entreprises mondiales qui ont choisi Coursera pour les affaires
Améliorez les compétences de vos employés pour exceller dans l’économie numérique
Foire Aux Questions
To access the course materials, assignments and to earn a Certificate, you will need to purchase the Certificate experience when you enroll in a course. You can try a Free Trial instead, or apply for Financial Aid. The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile.
Yes. In select learning programs, you can apply for financial aid or a scholarship if you can’t afford the enrollment fee. If fin aid or scholarship is available for your learning program selection, you’ll find a link to apply on the description page.
Plus de questions
Aide financière disponible,



