Optimize AI: Build Reusable Model Pipelines is an intermediate course for machine learning engineers and data scientists aiming to create efficient, scalable, and maintainable AI workflows. In a world of rapidly evolving models, choosing the right one is only the beginning. This course moves beyond model selection to focus on the critical next step: building standardized, reusable pipelines that ensure consistency and accelerate development.

Optimize AI: Build Reusable Model Pipelines

Optimize AI: Build Reusable Model Pipelines
This course is part of Agentic AI Development & Security Specialization

Instructor: LearningMate
Access provided by Interbank
Recommended experience
What you'll learn
Build reusable ML pipelines. Analyze model trade-offs, ensure reproducibility, and apply best practices for maintainable AI systems.
Skills you'll gain
Details to know

Add to your LinkedIn profile
December 2025
See how employees at top companies are mastering in-demand skills

Build your subject-matter expertise
- Learn new concepts from industry experts
- Gain a foundational understanding of a subject or tool
- Develop job-relevant skills with hands-on projects
- Earn a shareable career certificate

There are 2 modules in this course
This module addresses the critical trade-offs between large, general-purpose models and smaller, custom-tuned models. You will learn to analyze the balance between performance, inference speed, and cost, enabling you to make strategic, data-driven decisions when selecting a model for a specific business problem.
What's included
1 video1 reading1 assignment1 ungraded lab
This module focuses on building reproducible and maintainable machine learning workflows. You will learn to use Scikit-learn's Pipeline object to chain together preprocessing and modeling steps, eliminating manual errors and creating a standardized, end-to-end process for model training and deployment.
What's included
2 videos1 reading2 assignments1 ungraded lab
Earn a career certificate
Add this credential to your LinkedIn profile, resume, or CV. Share it on social media and in your performance review.
Instructor

Offered by
Why people choose Coursera for their career

Felipe M.

Jennifer J.

Larry W.

Chaitanya A.
Explore more from Data Science
¹ Some assignments in this course are AI-graded. For these assignments, your data will be used in accordance with Coursera's Privacy Notice.





