Engineer Features and Evaluate Models for Production is an intermediate course for machine learning practitioners and data scientists who are ready to move beyond notebooks and build production-grade ML systems. Getting a model to work once is easy; making it reliable, reproducible, and efficient in production is the real challenge. This course provides the engineering discipline to bridge that gap.

Engineer Features and Evaluate Models for Production

Engineer Features and Evaluate Models for Production
This course is part of LLM Optimization & Evaluation Specialization

Instructor: LearningMate
Access provided by Paidy
Recommended experience
What you'll learn
Build feature engineering pipelines and evaluate ML experiments using MLOps tools to select and deploy production-ready models.
Skills you'll gain
Details to know

Add to your LinkedIn profile
December 2025
See how employees at top companies are mastering in-demand skills

Build your subject-matter expertise
- Learn new concepts from industry experts
- Gain a foundational understanding of a subject or tool
- Develop job-relevant skills with hands-on projects
- Earn a shareable career certificate

There are 2 modules in this course
In this foundational module, learners will explore the critical importance of robust and reproducible data workflows in the management of production AI systems. They will delve into the reasons why professional-grade pipelines are essential, transitioning from a conceptual understanding to the practical creation of a feature engineering pipeline using scikit-learn. Through a blend of engaging dialogues, targeted readings, and instructional videos, learners will identify key components of effective pipelines, adhere to best practices in data transformation, and apply these insights to a realistic scenario: predicting customer churn. By the end of the module, participants will be equipped to construct a comprehensive pipeline that enhances model reliability and facilitates effective collaboration between experimentation and production environments.
What's included
1 video1 reading1 assignment1 ungraded lab
In this module, you will master the art of moving from raw experiment results to a final, justifiable recommendation. You will use TensorBoard to analyze training dynamics and diagnose issues, then synthesize your findings to select and defend a model choice that balances performance with real-world production constraints.
What's included
1 video1 reading1 assignment1 ungraded lab
Earn a career certificate
Add this credential to your LinkedIn profile, resume, or CV. Share it on social media and in your performance review.
Instructor

Offered by
Why people choose Coursera for their career

Felipe M.

Jennifer J.

Larry W.

Chaitanya A.
Explore more from Data Science

DeepLearning.AI

Coursera
¹ Some assignments in this course are AI-graded. For these assignments, your data will be used in accordance with Coursera's Privacy Notice.


