The Fine-Tuning Image Models with Diffusion course gives learners hands-on experience adapting generative image models for custom styles and applications. The course begins with the foundations of diffusion models, explaining forward and reverse diffusion processes and exploring the key components of Stable Diffusion architectures, including U-Net, VAE, and text encoders. Learners then apply Low-Rank Adaptation (LoRA) techniques to train efficiently on consumer hardware, comparing performance and trade-offs with full fine-tuning. In the second module, learners implement DreamBooth, a methodology for training on limited datasets to personalize models with custom concepts and artistic styles. They practice dataset preparation, hyperparameter tuning, and checkpoint management while preserving model generalization. The final module introduces ComfyUI, where learners design and execute node-based workflows that integrate fine-tuned models with advanced extensions like ControlNet.

Fine-tuning Image Models with Diffusion
Bald zu Ende: Erwerben Sie mit Coursera Plus für 199 $ (regulär 399 $) das nächste Level. Jetzt sparen.

Fine-tuning Image Models with Diffusion
Dieser Kurs ist Teil von Open Generative AI: Build with Open Models and Tools (berufsbezogenes Zertifikat)

Dozent: Professionals from the Industry
Bei enthalten
Empfohlene Erfahrung
Kompetenzen, die Sie erwerben
- Kategorie: AI Personalization
- Kategorie: Image Quality
- Kategorie: Generative AI
- Kategorie: Performance Tuning
- Kategorie: Model Deployment
- Kategorie: Autoencoders
- Kategorie: Transfer Learning
- Kategorie: Model Evaluation
- Kategorie: Generative Model Architectures
- Kategorie: AI Workflows
Wichtige Details

Zu Ihrem LinkedIn-Profil hinzufügen
Erfahren Sie, wie Mitarbeiter führender Unternehmen gefragte Kompetenzen erwerben.

Erweitern Sie Ihr Fachwissen im Bereich Machine Learning
- Lernen Sie neue Konzepte von Branchenexperten
- Gewinnen Sie ein Grundverständnis bestimmter Themen oder Tools
- Erwerben Sie berufsrelevante Kompetenzen durch praktische Projekte
- Erwerben Sie ein Berufszertifikat von Coursera zur Vorlage

In diesem Kurs gibt es 4 Module
Learn the fundamentals of diffusion models and why they play such a critical role in modern image generation. You’ll explore the key architectural components of Stable Diffusion, U-Net, VAE, and text encoders, and see how LoRA adapts these models efficiently for fine-tuning. You’ll also analyze memory optimization techniques and compare LoRA with full fine-tuning approaches, giving you practical principles for deciding which method to use depending on your goals and constraints.
Das ist alles enthalten
1 Video2 Lektüren1 Aufgabe1 Unbewertetes Labor
Learn how to personalize diffusion models using the DreamBooth methodology. You’ll prepare small, targeted datasets for training custom concepts and styles, and understand how prior-preservation loss helps maintain model generalization. You’ll also apply hyperparameter strategies to balance creativity with stability and practice managing checkpoints and merging techniques. These skills give you the ability to adapt diffusion models to unique styles and use cases, making fine-tuning directly relevant to real-world creative and professional projects.
Das ist alles enthalten
1 Video1 Lektüre1 Aufgabe1 Unbewertetes Labor
Learn how to use ComfyUI to design and manage advanced workflows for diffusion models. You’ll set up the environment, navigate the node-based interface, and load custom fine-tuned models into your pipelines. You’ll also practice building complex generation workflows with extensions like ControlNet, giving you a flexible, visual way to experiment and produce consistent, high-quality results. These skills make workflow design more efficient and directly applicable to real-world creative and production settings.
Das ist alles enthalten
2 Lektüren1 Aufgabe
Learn how to optimize fine-tuned diffusion models so they’re reliable in real production environments. You’ll adjust inference settings like steps, CFG scale, and batch size to balance speed, quality, and resource use, and practice testing how small tweaks can dramatically improve results. You’ll also adapt workflows for deployment, gaining practical skills to deliver outputs that are both efficient and production-ready. These techniques give you the ability to make informed trade-offs that directly impact performance in real-world projects.
Das ist alles enthalten
1 Lektüre1 Aufgabe1 Unbewertetes Labor
Erwerben Sie ein Karrierezertifikat.
Fügen Sie dieses Zeugnis Ihrem LinkedIn-Profil, Lebenslauf oder CV hinzu. Teilen Sie sie in Social Media und in Ihrer Leistungsbeurteilung.
Dozent

von
Mehr von Machine Learning entdecken

Coursera

Coursera

Coursera
Warum entscheiden sich Menschen für Coursera für ihre Karriere?





Neue Karrieremöglichkeiten mit Coursera Plus
Unbegrenzter Zugang zu 10,000+ Weltklasse-Kursen, praktischen Projekten und berufsqualifizierenden Zertifikatsprogrammen - alles in Ihrem Abonnement enthalten
Bringen Sie Ihre Karriere mit einem Online-Abschluss voran.
Erwerben Sie einen Abschluss von erstklassigen Universitäten – 100 % online
Schließen Sie sich mehr als 3.400 Unternehmen in aller Welt an, die sich für Coursera for Business entschieden haben.
Schulen Sie Ihre Mitarbeiter*innen, um sich in der digitalen Wirtschaft zu behaupten.
Häufig gestellte Fragen
To access the course materials, assignments and to earn a Certificate, you will need to purchase the Certificate experience when you enroll in a course. You can try a Free Trial instead, or apply for Financial Aid. The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Certificate, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile.
Weitere Fragen
Finanzielle Unterstützung verfügbar,
¹ Einige Aufgaben in diesem Kurs werden mit AI bewertet. Für diese Aufgaben werden Ihre Daten in Übereinstimmung mit Datenschutzhinweis von Courseraverwendet.


