This course introduces the theoretical, philosophical, and mathematical foundations of Bayesian Statistical inference. Students will learn to apply this foundational knowledge to real-world data science problems. Topics include the use and interpretations of probability theory in Bayesian inference; Bayes’ theorem for statistical parameters; conjugate, improper, and objective priors distributions; data science applications of Bayesian inference; and ethical implications of Bayesian statistics.

noch 6 Tage: Holen Sie sich einen Black Friday Boost mit $160 Rabatt auf 10.000+ Programme.Sparen Sie jetzt.


Empfohlene Erfahrung
Was Sie lernen werden
Implement Bayesian inference to solve real-world statistics and data science problems.
Articulate the logic of Bayesian inference and compare and contrast it with frequentist inference.
Utilize conjugate, improper, and objective priors to find posterior distributions.
Kompetenzen, die Sie erwerben
- Kategorie: Predictive Analytics
- Kategorie: Statistical Methods
- Kategorie: Calculus
- Kategorie: Regression Analysis
- Kategorie: Statistical Modeling
- Kategorie: Probability
- Kategorie: Statistical Inference
- Kategorie: Probability Distribution
- Kategorie: Data Science
- Kategorie: Bayesian Statistics
- Kategorie: Data Ethics
Wichtige Details

Zu Ihrem LinkedIn-Profil hinzufügen
5 Aufgaben
Erfahren Sie, wie Mitarbeiter führender Unternehmen gefragte Kompetenzen erwerben.

In diesem Kurs gibt es 5 Module
This module introduces learners to Bayesian statistics by comparing Bayesian and frequentist methods. The introduction is motivated by an example that illustrates how different assumptions about data collection - specifically, stopping rules - can result in different conclusions when using frequentist methods. Bayesian methods, on the other hand, yield the same conclusion regardless of stopping rules. This example illuminates a key philosophical difference between frequentist and Bayesian methods.
Das ist alles enthalten
8 Videos4 Lektüren1 Aufgabe3 Programmieraufgaben1 Diskussionsthema2 Unbewertete Labore
This module introduces learners to Bayesian inference through an example using discrete data. The example demonstrates how the posterior distribution is calculated and how uncertainty is quantified in Bayesian statistics. The module also describes methods for summarizing the posterior distribution and introduces learners to the posterior predictive distribution through use of the Monte Carlo simulation. Monte Carlo simulations will be important for advanced computational Bayesian methods.
Das ist alles enthalten
6 Videos1 Aufgabe1 Programmieraufgabe2 Unbewertete Labore
This module introduces learners to methods for conducting Bayesian inference when the likelihood and prior distributions come from a convenient family of distributions, called conjugate families. Conjugate families are a class of prior distributions for which the posterior distribution is in the same class. The module covers the beta-binomial, normal-normal and inverse gamma-normal conjugate families and includes examples of their application to find posterior distributions in R.
Das ist alles enthalten
7 Videos1 Lektüre1 Aufgabe1 Programmieraufgabe2 Unbewertete Labore
This module motivates, defines, and utilizes improper and so-called "objective" prior distributions in Bayesian statistical inference.
Das ist alles enthalten
7 Videos1 Lektüre1 Aufgabe1 Programmieraufgabe2 Unbewertete Labore
In this module, learners will be introduced to Bayesian inference involving more than one unknown parameter. Multiparameter problems are motivated with a simple example: a conjugate prior, two-parameter model involving normally distributed data. From there, we learn to solve more complex problems, including Bayesian linear regression and variance-covariance matrix estimation.
Das ist alles enthalten
9 Videos1 Lektüre1 Aufgabe1 Programmieraufgabe3 Unbewertete Labore
Dozent

Mehr von Probability and Statistics entdecken
Status: Kostenloser TestzeitraumUniversity of California, Santa Cruz
Status: Kostenloser TestzeitraumUniversity of California, Santa Cruz

Duke University
Status: Kostenloser TestzeitraumUniversity of Colorado Boulder
Warum entscheiden sich Menschen für Coursera für ihre Karriere?





Neue Karrieremöglichkeiten mit Coursera Plus
Unbegrenzter Zugang zu 10,000+ Weltklasse-Kursen, praktischen Projekten und berufsqualifizierenden Zertifikatsprogrammen - alles in Ihrem Abonnement enthalten
Bringen Sie Ihre Karriere mit einem Online-Abschluss voran.
Erwerben Sie einen Abschluss von erstklassigen Universitäten – 100 % online
Schließen Sie sich mehr als 3.400 Unternehmen in aller Welt an, die sich für Coursera for Business entschieden haben.
Schulen Sie Ihre Mitarbeiter*innen, um sich in der digitalen Wirtschaft zu behaupten.
Häufig gestellte Fragen
To access the course materials, assignments and to earn a Certificate, you will need to purchase the Certificate experience when you enroll in a course. You can try a Free Trial instead, or apply for Financial Aid. The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile.
Yes. In select learning programs, you can apply for financial aid or a scholarship if you can’t afford the enrollment fee. If fin aid or scholarship is available for your learning program selection, you’ll find a link to apply on the description page.
Weitere Fragen
Finanzielle Unterstützung verfügbar,

