Learners will be able to apply probability, sampling, distributions, and statistical testing to analyze datasets and build machine learning models with Python. By the end of this course, they will differentiate data types, evaluate hypothesis testing approaches, and utilize linear algebra and inferential methods to interpret and validate results in real-world contexts.

noch 5 Tage: Holen Sie sich einen Black Friday Boost mit $160 Rabatt auf 10.000+ Programme.Sparen Sie jetzt.


Machine Learning with Python & Statistics
Dieser Kurs ist Teil von Spezialisierung für AI Machine Learning with R & Python Projects

Dozent: EDUCBA
Bei enthalten
Was Sie lernen werden
Apply probability, sampling, and distributions to datasets.
Use linear algebra and hypothesis testing for data analysis.
Build and validate ML models with Python in real-world contexts.
Kompetenzen, die Sie erwerben
- Kategorie: Statistics
- Kategorie: Python Programming
- Kategorie: Data Analysis
- Kategorie: Linear Algebra
- Kategorie: Machine Learning Algorithms
- Kategorie: Probability Distribution
- Kategorie: Machine Learning
- Kategorie: Probability
- Kategorie: Statistical Inference
- Kategorie: Data Mining
- Kategorie: Statistical Hypothesis Testing
- Kategorie: Statistical Analysis
- Kategorie: Sampling (Statistics)
Wichtige Details

Zu Ihrem LinkedIn-Profil hinzufügen
Oktober 2025
14 Aufgaben
Erfahren Sie, wie Mitarbeiter führender Unternehmen gefragte Kompetenzen erwerben.

Erweitern Sie Ihre Fachkenntnisse
- Lernen Sie neue Konzepte von Branchenexperten
- Gewinnen Sie ein Grundverständnis bestimmter Themen oder Tools
- Erwerben Sie berufsrelevante Kompetenzen durch praktische Projekte
- Erwerben Sie ein Berufszertifikat zur Vorlage

In diesem Kurs gibt es 4 Module
This module introduces learners to the essential foundations of Machine Learning with Python, exploring its core concepts, real-world applications, and the critical role of data mining in uncovering patterns. Students will gain a strong conceptual base to understand how machine learning systems differ from traditional programming and how data-driven insights power intelligent decision-making.
Das ist alles enthalten
8 Videos3 Aufgaben
This module introduces learners to the essential concepts of sampling methods and statistical data types in Machine Learning. It explores systematic, cluster, and stratified sampling techniques, while also distinguishing between qualitative, quantitative, discrete, continuous, nominal, and ordinal data. By mastering these foundations, learners will understand how data collection and classification impact the accuracy, reliability, and effectiveness of machine learning models.
Das ist alles enthalten
8 Videos3 Aufgaben
This module provides a comprehensive foundation in probability theory, random variables, and linear algebra concepts essential for machine learning. Learners will explore probability fundamentals such as conditional probability, independence, and the law of total probability, then advance into discrete and continuous distributions including Bernoulli, geometric, and normal distributions. The module also introduces linear algebra essentials—matrices, transposes, and determinants—equipping learners with mathematical tools required to build and analyze machine learning models effectively.
Das ist alles enthalten
16 Videos4 Aufgaben
This module equips learners with the statistical foundations required to test hypotheses, interpret confidence intervals, and apply advanced inferential techniques in machine learning. Learners will explore error types, critical value and p-value approaches, tail tests, and confidence intervals. The module then advances into applied inferential statistics with t-tests, Chi-square tests, and goodness of fit measures, as well as the interpretation of covariance. By the end, learners will be able to conduct robust statistical testing and evaluate data relationships with accuracy.
Das ist alles enthalten
23 Videos4 Aufgaben
Erwerben Sie ein Karrierezertifikat.
Fügen Sie dieses Zeugnis Ihrem LinkedIn-Profil, Lebenslauf oder CV hinzu. Teilen Sie sie in Social Media und in Ihrer Leistungsbeurteilung.
Mehr von Machine Learning entdecken
Status: Kostenloser Testzeitraum
Status: Kostenloser Testzeitraum
Status: VorschauO.P. Jindal Global University
Status: Kostenloser Testzeitraum
Warum entscheiden sich Menschen für Coursera für ihre Karriere?





Neue Karrieremöglichkeiten mit Coursera Plus
Unbegrenzter Zugang zu 10,000+ Weltklasse-Kursen, praktischen Projekten und berufsqualifizierenden Zertifikatsprogrammen - alles in Ihrem Abonnement enthalten
Bringen Sie Ihre Karriere mit einem Online-Abschluss voran.
Erwerben Sie einen Abschluss von erstklassigen Universitäten – 100 % online
Schließen Sie sich mehr als 3.400 Unternehmen in aller Welt an, die sich für Coursera for Business entschieden haben.
Schulen Sie Ihre Mitarbeiter*innen, um sich in der digitalen Wirtschaft zu behaupten.
Häufig gestellte Fragen
To access the course materials, assignments and to earn a Certificate, you will need to purchase the Certificate experience when you enroll in a course. You can try a Free Trial instead, or apply for Financial Aid. The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile.
Yes. In select learning programs, you can apply for financial aid or a scholarship if you can’t afford the enrollment fee. If fin aid or scholarship is available for your learning program selection, you’ll find a link to apply on the description page.
Weitere Fragen
Finanzielle Unterstützung verfügbar,

