Coursera
Optimize AI: Build Robust Ensemble Models

Erwerben Sie mit Coursera Plus für 199 $ (regulär 399 $) das nächste Level. Jetzt sparen.

kurs ist nicht verfügbar in Deutsch (Deutschland)

Wir übersetzen es in weitere Sprachen.
Coursera

Optimize AI: Build Robust Ensemble Models

Hurix Digital

Dozent: Hurix Digital

Bei Coursera Plus enthalten

Verschaffen Sie sich einen Einblick in ein Thema und lernen Sie die Grundlagen.
Stufe Mittel

Empfohlene Erfahrung

1 Stunde zu vervollständigen
Flexibler Zeitplan
In Ihrem eigenen Lerntempo lernen
Verschaffen Sie sich einen Einblick in ein Thema und lernen Sie die Grundlagen.
Stufe Mittel

Empfohlene Erfahrung

1 Stunde zu vervollständigen
Flexibler Zeitplan
In Ihrem eigenen Lerntempo lernen

Was Sie lernen werden

  • Evaluate constraints systematically rather than simply maximizing accuracy metrics.

  • Statistical significance testing prevents deploying models where improvements may result from random variation than genuine algorithmic advantages.

  • Ensemble methods outperform individual models by combining diverse algorithmic approaches.

  • Sustainable machine learning require validation frameworks that balance statistical rigor with business impact.

Kompetenzen, die Sie erwerben

  • Kategorie: A/B Testing
  • Kategorie: Statistical Methods
  • Kategorie: Data-Driven Decision-Making
  • Kategorie: Statistical Analysis
  • Kategorie: Regulatory Requirements
  • Kategorie: Scalability
  • Kategorie: Analytics
  • Kategorie: Applied Machine Learning
  • Kategorie: Model Evaluation
  • Kategorie: Decision Making
  • Kategorie: Machine Learning
  • Kategorie: Machine Learning Algorithms
  • Kategorie: Statistical Hypothesis Testing
  • Kategorie: Performance Analysis
  • Kategorie: MLOps (Machine Learning Operations)
  • Kategorie: Predictive Analytics
  • Kategorie: Predictive Modeling
  • Kategorie: Model Deployment

Wichtige Details

Zertifikat zur Vorlage

Zu Ihrem LinkedIn-Profil hinzufügen

Kürzlich aktualisiert!

Januar 2026

Bewertungen

6 Zuweisungen¹

KI-bewertet siehe Haftungsausschluss
Unterrichtet in Englisch

Erfahren Sie, wie Mitarbeiter führender Unternehmen gefragte Kompetenzen erwerben.

 Logos von Petrobras, TATA, Danone, Capgemini, P&G und L'Oreal

Erweitern Sie Ihre Fachkenntnisse

Dieser Kurs ist Teil der Spezialisierung Spezialisierung für AI Systems Reliability & Security
Wenn Sie sich für diesen Kurs anmelden, werden Sie auch für diese Spezialisierung angemeldet.
  • Lernen Sie neue Konzepte von Branchenexperten
  • Gewinnen Sie ein Grundverständnis bestimmter Themen oder Tools
  • Erwerben Sie berufsrelevante Kompetenzen durch praktische Projekte
  • Erwerben Sie ein Berufszertifikat zur Vorlage

In diesem Kurs gibt es 3 Module

Learners will systematically evaluate the balance between model performance and interpretability in production environments by applying a four-dimensional assessment framework that considers regulatory intensity, stakeholder involvement, decision impact, and technical constraints. Through industry examples from Netflix, Airbnb, and Goldman Sachs, participants will learn to map performance-interpretability frontiers, establish minimum performance thresholds, and make evidence-based model selection decisions that reflect business context rather than defaulting to maximum accuracy or maximum interpretability.

Das ist alles enthalten

3 Videos1 Lektüre1 Aufgabe

Learners will implement rigorous statistical testing frameworks to validate algorithm improvements through paired t-tests, bootstrap resampling, cross-validation significance testing, and production A/B experiments. Participants will learn to distinguish genuine algorithmic improvements from random variation by calculating p-values, effect sizes, and confidence intervals, while understanding how Netflix, Goldman Sachs, and Airbnb use statistical validation to prevent costly deployment mistakes caused by misinterpreting measurement noise as genuine performance gains.

Das ist alles enthalten

3 Videos1 Lektüre2 Aufgaben

Learners will architect production-ready ensemble systems that combine diverse algorithms through bagging, boosting, and stacking methodologies to achieve superior robustness and performance. Participants will implement strategic diversity mechanisms, balance computational complexity against performance gains, and design systems with graceful degradation capabilities. Through examples from Netflix's 107+ algorithm recommendation system and Goldman Sachs' trading algorithms, learners will understand how industry leaders create ensemble architectures that maintain consistent performance across unpredictable production conditions.

Das ist alles enthalten

2 Videos1 Lektüre3 Aufgaben

Erwerben Sie ein Karrierezertifikat.

Fügen Sie dieses Zeugnis Ihrem LinkedIn-Profil, Lebenslauf oder CV hinzu. Teilen Sie sie in Social Media und in Ihrer Leistungsbeurteilung.

Dozent

Hurix Digital
Coursera
173 Kurse4.631 Lernende

von

Coursera

Mehr von Machine Learning entdecken

Warum entscheiden sich Menschen für Coursera für ihre Karriere?

Felipe M.
Lernender seit 2018
„Es ist eine großartige Erfahrung, in meinem eigenen Tempo zu lernen. Ich kann lernen, wenn ich Zeit und Nerven dazu habe.“
Jennifer J.
Lernender seit 2020
„Bei einem spannenden neuen Projekt konnte ich die neuen Kenntnisse und Kompetenzen aus den Kursen direkt bei der Arbeit anwenden.“
Larry W.
Lernender seit 2021
„Wenn mir Kurse zu Themen fehlen, die meine Universität nicht anbietet, ist Coursera mit die beste Alternative.“
Chaitanya A.
„Man lernt nicht nur, um bei der Arbeit besser zu werden. Es geht noch um viel mehr. Bei Coursera kann ich ohne Grenzen lernen.“
Coursera Plus

Neue Karrieremöglichkeiten mit Coursera Plus

Unbegrenzter Zugang zu 10,000+ Weltklasse-Kursen, praktischen Projekten und berufsqualifizierenden Zertifikatsprogrammen - alles in Ihrem Abonnement enthalten

Bringen Sie Ihre Karriere mit einem Online-Abschluss voran.

Erwerben Sie einen Abschluss von erstklassigen Universitäten – 100 % online

Schließen Sie sich mehr als 3.400 Unternehmen in aller Welt an, die sich für Coursera for Business entschieden haben.

Schulen Sie Ihre Mitarbeiter*innen, um sich in der digitalen Wirtschaft zu behaupten.

Häufig gestellte Fragen

¹ Einige Aufgaben in diesem Kurs werden mit AI bewertet. Für diese Aufgaben werden Ihre Daten in Übereinstimmung mit Datenschutzhinweis von Courseraverwendet.