Production ML models failing your latency targets? Learn how to make them run 3-5x faster without losing accuracy. This course helps ML engineers and data scientists optimize neural network inference for real-world deployment—across mobile, edge, and cloud environments. If you face slow model inference, high infrastructure costs, or deployment constraints, this course provides practical solutions. You'll master profiling techniques to identify performance bottlenecks, apply quantization to cut precision requirements, and make smart trade-offs between speed, accuracy, and resource constraints. You'll learn to benchmark optimization techniques and select the right approach for deployment scenarios. You'll explore inference profiling and metrics, pruning strategies, and quantization methods. You'll practice with real-world cases—from streaming platforms to autonomous vehicles—using industry-standard tools like PyTorch Profiler, TensorRT, and pruning utilities.

Erwerben Sie mit Coursera Plus für 199 $ (regulär 399 $) das nächste Level. Jetzt sparen.

Optimize AI Inference Speed & Accuracy
Dieser Kurs ist Teil von Spezialisierung für AI Security: Security in the Age of Artificial Intelligence


Dozenten: Starweaver
Bei enthalten
Empfohlene Erfahrung
Was Sie lernen werden
Analyze inference bottlenecks to identify optimization opportunities in production ML systems.
Implement model pruning techniques to reduce computational complexity while maintaining acceptable accuracy.
Apply quantization methods and benchmark trade-offs for secure and efficient model deployment.
Kompetenzen, die Sie erwerben
- Kategorie: Process Optimization
- Kategorie: Project Performance
- Kategorie: Keras (Neural Network Library)
- Kategorie: Network Model
- Kategorie: Network Performance Management
- Kategorie: Cloud Deployment
- Kategorie: Model Evaluation
- Kategorie: Model Deployment
- Kategorie: Benchmarking
- Kategorie: Convolutional Neural Networks
Wichtige Details

Zu Ihrem LinkedIn-Profil hinzufügen
Dezember 2025
1 Aufgabe
Erfahren Sie, wie Mitarbeiter führender Unternehmen gefragte Kompetenzen erwerben.

Erweitern Sie Ihre Fachkenntnisse
- Lernen Sie neue Konzepte von Branchenexperten
- Gewinnen Sie ein Grundverständnis bestimmter Themen oder Tools
- Erwerben Sie berufsrelevante Kompetenzen durch praktische Projekte
- Erwerben Sie ein Berufszertifikat zur Vorlage

In diesem Kurs gibt es 3 Module
In this module, learners will master profiling techniques to identify bottlenecks and understand the fundamental trade-offs in model inference optimization. You'll use industry-standard tools like PyTorch Profiler to diagnose where models waste time—whether in computation, memory bandwidth, or data transfer. By the end, you'll confidently analyze profiling data, prioritize optimization efforts, and establish performance baselines for production ML systems.
Das ist alles enthalten
4 Videos2 Lektüren1 peer review
In this module, learners will master pruning techniques to reduce neural network complexity without sacrificing accuracy. You'll explore both structured and unstructured pruning approaches, implement them using PyTorch pruning utilities, and discover how to recover accuracy through fine-tuning and knowledge distillation. By the end, you'll confidently apply pruning to optimize models for resource-constrained environments like mobile devices and edge hardware.
Das ist alles enthalten
3 Videos1 Lektüre1 peer review
In this module, learners will master quantization techniques to reduce numerical precision while maintaining model accuracy. You'll implement both post-training quantization and quantization-aware training using PyTorch, then compare quantization against pruning across speed, accuracy, and security dimensions. By the end, you'll understand how optimization choices affect adversarial robustness and confidently select the right technique for secure, high-performance deployments in mission-critical applications.
Das ist alles enthalten
4 Videos1 Lektüre1 Aufgabe2 peer reviews
Erwerben Sie ein Karrierezertifikat.
Fügen Sie dieses Zeugnis Ihrem LinkedIn-Profil, Lebenslauf oder CV hinzu. Teilen Sie sie in Social Media und in Ihrer Leistungsbeurteilung.
von
Mehr von Machine Learning entdecken
Status: Kostenloser Testzeitraum
Google Cloud

DeepLearning.AI
Warum entscheiden sich Menschen für Coursera für ihre Karriere?




Häufig gestellte Fragen
To access the course materials, assignments and to earn a Certificate, you will need to purchase the Certificate experience when you enroll in a course. You can try a Free Trial instead, or apply for Financial Aid. The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile.
Yes. In select learning programs, you can apply for financial aid or a scholarship if you can’t afford the enrollment fee. If fin aid or scholarship is available for your learning program selection, you’ll find a link to apply on the description page.
Weitere Fragen
Finanzielle Unterstützung verfügbar,





