Packt
LLM Engineer’s Handbook

Sparen Sie $160 für die Barrierefreiheit von mehr als 10.000 Programmen - ein wahres Urlaubsvergnügen. Jetzt sparen.

kurs ist nicht verfügbar in Deutsch (Deutschland)

Wir übersetzen es in weitere Sprachen.
Packt

LLM Engineer’s Handbook

Bei Coursera Plus enthalten

Verschaffen Sie sich einen Einblick in ein Thema und lernen Sie die Grundlagen.
Stufe Anfänger

Empfohlene Erfahrung

2 Wochen zu vervollständigen
unter 10 Stunden pro Woche
Flexibler Zeitplan
In Ihrem eigenen Lerntempo lernen
Verschaffen Sie sich einen Einblick in ein Thema und lernen Sie die Grundlagen.
Stufe Anfänger

Empfohlene Erfahrung

2 Wochen zu vervollständigen
unter 10 Stunden pro Woche
Flexibler Zeitplan
In Ihrem eigenen Lerntempo lernen

Was Sie lernen werden

  • Design and manage effective LLM training and deployment pipelines.

  • Implement supervised fine-tuning and evaluate LLM performance.

  • Deploy scalable, end-to-end LLM applications using cloud tools.

Kompetenzen, die Sie erwerben

  • Kategorie: AWS SageMaker
  • Kategorie: CI/CD
  • Kategorie: Scalability
  • Kategorie: Extract, Transform, Load
  • Kategorie: Supervised Learning
  • Kategorie: Application Deployment
  • Kategorie: Performance Tuning
  • Kategorie: Large Language Modeling
  • Kategorie: Data Pipelines
  • Kategorie: MLOps (Machine Learning Operations)
  • Kategorie: Prompt Engineering

Wichtige Details

Zertifikat zur Vorlage

Zu Ihrem LinkedIn-Profil hinzufügen

Kürzlich aktualisiert!

November 2025

Bewertungen

11 Aufgaben

Unterrichtet in Englisch

Erfahren Sie, wie Mitarbeiter führender Unternehmen gefragte Kompetenzen erwerben.

 Logos von Petrobras, TATA, Danone, Capgemini, P&G und L'Oreal

In diesem Kurs gibt es 11 Module

In this section, we delve into the concept and architecture of LLM Twin, an innovative AI model mimicking a person's writing style and personality. We discuss its significance, benefits over generic chatbots, and the planning process for creating an effective LLM product. Detailed insights into the design of the feature, training, and inference pipelines are explored to structure a robust ML system.

Das ist alles enthalten

2 Videos3 Lektüren1 Aufgabe

In this section, we introduce the essential tools needed for the course, particularly for the LLM Twin project. We provide an overview of the tech stack, cover installation procedures for Python and its ecosystem, dependency management with Poetry, and task execution using Poe the Poet. This section also provides insights into MLOps and LLMOps tooling, including ZenML and Hugging Face, and explains their roles in the project. Finally, we guide users in setting up an AWS account, focusing on SageMaker for deploying ML models.

Das ist alles enthalten

1 Video2 Lektüren1 Aufgabe

In this section, we delve into the LLM Twin project by designing a data collection pipeline for gathering raw data essential for LLM use cases, such as fine-tuning and inference. We'll focus on implementing an ETL pipeline that aggregates data from platforms like Medium and GitHub into a MongoDB data warehouse, thus simulating real-world machine learning project scenarios.

Das ist alles enthalten

1 Video4 Lektüren1 Aufgabe

In this section, we explore the Retrieval-augmented Generation (RAG) feature pipeline, a crucial technique for embedding custom data into large language models without constant fine-tuning. We introduce the fundamental components of a naive RAG system, such as chunking, embedding, and vector databases. We also delve into LLM Twin's RAG feature pipeline architecture, applying theoretical concepts through practical implementation, and discuss the importance of RAG for addressing issues like model hallucinations and old data. This section provides in-depth insights into advanced RAG techniques and the role of batch pipelines in syncing data for improved accuracy.

Das ist alles enthalten

1 Video7 Lektüren1 Aufgabe

In this section, we will explore the process of Supervised Fine-Tuning (SFT) for Large Language Models (LLMs). We'll delve into the creation of instruction datasets and how they are used to refine LLMs for specific tasks. This section covers the steps involved in crafting these datasets, the importance of data quality, and presents various techniques and strategies for enhancing the fine-tuning process. Our focus will be on transforming general-purpose models into specialized assistants through SFT, enabling them to provide more coherent and relevant responses.

Das ist alles enthalten

1 Video7 Lektüren1 Aufgabe

In this section, we delve into the realms of preference alignment, discussing how Direct Preference Optimization (DPO) can fine-tune language models to better align with human preferences. We elaborate on creating and evaluating preference datasets, ensuring our models capture nuanced human interactions.

Das ist alles enthalten

1 Video4 Lektüren1 Aufgabe

In this section, we delve into the evaluation of large language models (LLMs), addressing various evaluation methods and their significance. We cover general-purpose, domain-specific, and task-specific evaluations, highlighting the unique challenges each presents. Additionally, we explore retrieval-augmented generation (RAG) pipelines and introduce tools like Ragas and ARES for comprehensive LLM assessment.

Das ist alles enthalten

1 Video3 Lektüren1 Aufgabe

In this section, we dive into the art of fine-tuning large language models to boost their performance and efficiency. We'll explore key strategies to optimize the inference process of these models, a crucial step given their heavy computational and memory demands. From reducing latency to improving throughput and minimizing memory usage, we examine how to deploy specialized hardware and innovative techniques to enhance model output. By learning these optimization secrets, you'll unlock more efficient deployments, be they for fast-response tasks like code completion or document generation in batches.

Das ist alles enthalten

1 Video3 Lektüren1 Aufgabe

In this section, we explore the construction and implementation of a RAG inference pipeline, starting from understanding its architecture to implementing key modules such as retrieval, prompt creation, and interaction with the LLM. We introduce methods for optimizing retrieval processes like query expansion and self-querying while utilizing OpenAI's API, and integrate these techniques into a comprehensive retrieval module. We'll conclude by assembling these elements into a cohesive inference pipeline and preparing for further deployment steps.

Das ist alles enthalten

1 Video5 Lektüren1 Aufgabe

In this section, we focus on deploying the inference pipeline for large language models (LLMs) in ML applications, ensuring models are accessible and efficient for end users. We'll cover deployment strategies, architectural decisions, and optimization techniques to address challenges like computing power and feature access.

Das ist alles enthalten

1 Video5 Lektüren1 Aufgabe

In this section, we dive into the intricacies of MLOps and LLMOps, exploring their roles in automating machine learning processes and handling large language models. We will cover their origins in DevOps, highlight the unique challenges LLMOps addresses, such as prompt management and scaling issues, and illustrate the practical steps for deploying these systems efficiently. The section also includes discussions on the transition from manual deployment to cloud-based solutions, emphasizing the advantages of CI/CD pipelines and Dockerization in executing and managing models at scale.

Das ist alles enthalten

1 Video7 Lektüren1 Aufgabe

Dozent

Packt - Course Instructors
Packt
1.177 Kurse279.079 Lernende

von

Packt

Mehr von Data Analysis entdecken

Warum entscheiden sich Menschen für Coursera für ihre Karriere?

Felipe M.
Lernender seit 2018
„Es ist eine großartige Erfahrung, in meinem eigenen Tempo zu lernen. Ich kann lernen, wenn ich Zeit und Nerven dazu habe.“
Jennifer J.
Lernender seit 2020
„Bei einem spannenden neuen Projekt konnte ich die neuen Kenntnisse und Kompetenzen aus den Kursen direkt bei der Arbeit anwenden.“
Larry W.
Lernender seit 2021
„Wenn mir Kurse zu Themen fehlen, die meine Universität nicht anbietet, ist Coursera mit die beste Alternative.“
Chaitanya A.
„Man lernt nicht nur, um bei der Arbeit besser zu werden. Es geht noch um viel mehr. Bei Coursera kann ich ohne Grenzen lernen.“
Coursera Plus

Neue Karrieremöglichkeiten mit Coursera Plus

Unbegrenzter Zugang zu 10,000+ Weltklasse-Kursen, praktischen Projekten und berufsqualifizierenden Zertifikatsprogrammen - alles in Ihrem Abonnement enthalten

Bringen Sie Ihre Karriere mit einem Online-Abschluss voran.

Erwerben Sie einen Abschluss von erstklassigen Universitäten – 100 % online

Schließen Sie sich mehr als 3.400 Unternehmen in aller Welt an, die sich für Coursera for Business entschieden haben.

Schulen Sie Ihre Mitarbeiter*innen, um sich in der digitalen Wirtschaft zu behaupten.

Häufig gestellte Fragen