The Understanding Open AI Workspaces course is for developers with intermediate machine learning experience and Python skills who are new to Generative AI and want to learn how to build, customize, optimize, and deploy open source large language models.

Understanding Open AI Workspaces
Bald zu Ende: Erwerben Sie mit Coursera Plus für 199 $ (regulär 399 $) das nächste Level. Jetzt sparen.

Understanding Open AI Workspaces
Dieser Kurs ist Teil von Open Generative AI: Build with Open Models and Tools (berufsbezogenes Zertifikat)

Dozent: Professionals from the Industry
Bei enthalten
Empfohlene Erfahrung
Kompetenzen, die Sie erwerben
- Kategorie: API Design
- Kategorie: Generative AI
- Kategorie: Cloud Computing
- Kategorie: Cloud API
- Kategorie: Python Programming
- Kategorie: Data Persistence
Wichtige Details

Zu Ihrem LinkedIn-Profil hinzufügen
Januar 2026
4 Aufgaben
Erfahren Sie, wie Mitarbeiter führender Unternehmen gefragte Kompetenzen erwerben.

Erweitern Sie Ihr Fachwissen im Bereich Software Development
- Lernen Sie neue Konzepte von Branchenexperten
- Gewinnen Sie ein Grundverständnis bestimmter Themen oder Tools
- Erwerben Sie berufsrelevante Kompetenzen durch praktische Projekte
- Erwerben Sie ein Berufszertifikat von Coursera zur Vorlage

In diesem Kurs gibt es 3 Module
In this module, you’ll set up a local environment for working with large language models using Ollama. You’ll install and configure the tool, download and switch between different models, and practice operating through the command-line interface. You’ll also explore how to optimize performance and connect Ollama with external applications, giving you a hands-on way to manage and experiment with LLMs.
Das ist alles enthalten
4 Videos2 Lektüren1 Aufgabe1 Unbewertetes Labor
In this module, you’ll learn the essentials of using Docker to set up stable, reproducible environments for AI development. You’ll practice building containers, managing model persistence and data volumes, and designing multi-container setups that separate models from applications. You’ll also explore strategies to optimize memory and GPU resources, giving you the confidence to run and experiment with AI projects.
Das ist alles enthalten
3 Videos1 Lektüre2 Aufgaben
In this module, you’ll learn how to make Jupyter work effectively for AI development. You’ll navigate the notebook interface, set up GPU access, and manage dependencies with pip and conda. You’ll also implement strategies for persistent storage and monitor system performance during training, so your workflows stay efficient, stable, and ready for real-world projects.
Das ist alles enthalten
4 Videos2 Lektüren1 Aufgabe1 Unbewertetes Labor
Erwerben Sie ein Karrierezertifikat.
Fügen Sie dieses Zeugnis Ihrem LinkedIn-Profil, Lebenslauf oder CV hinzu. Teilen Sie sie in Social Media und in Ihrer Leistungsbeurteilung.
Dozent

von
Mehr von Software Development entdecken
Warum entscheiden sich Menschen für Coursera für ihre Karriere?




Häufig gestellte Fragen
To access the course materials, assignments and to earn a Certificate, you will need to purchase the Certificate experience when you enroll in a course. You can try a Free Trial instead, or apply for Financial Aid. The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Certificate, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile.
Weitere Fragen
Finanzielle Unterstützung verfügbar,








