AppDynamics Monitoring for Machine Learning Applications is a beginner-level course designed to equip data scientists, ML engineers, and DevOps professionals with the specialized monitoring skills needed for production ML systems.

Acquérir des compétences de haut niveau avec Coursera Plus pour 199 $ (régulièrement 399 $). Économisez maintenant.

Expérience recommandée
Compétences que vous acquerrez
- Catégorie : Performance Analysis
- Catégorie : Application Performance Management
- Catégorie : MLOps (Machine Learning Operations)
- Catégorie : Performance Metric
- Catégorie : Anomaly Detection
- Catégorie : Artificial Intelligence and Machine Learning (AI/ML)
- Catégorie : Model Deployment
- Catégorie : Continuous Monitoring
- Catégorie : Process Optimization
- Catégorie : Data Mapping
- Catégorie : System Monitoring
- Catégorie : Performance Tuning
- Catégorie : Root Cause Analysis
Détails à connaître

Ajouter à votre profil LinkedIn
décembre 2025
Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées

Il y a 3 modules dans ce cours
In this introductory lesson, learners will explore the fundamentals of AppDynamics monitoring platform and understand its unique application to machine learning environments. They will discover how modern ML applications require specialized monitoring approaches and learn about AppDynamics' architecture, core components, and AI-powered capabilities that make it particularly suited for data science workflows.
Inclus
3 vidéos3 lectures1 devoir
In this hands-on lesson, learners will dive deep into the practical implementation of AppDynamics monitoring for machine learning systems. They will learn to map complex ML application flows, configure performance tracking for data science workflows, and set up health rules specifically designed for ML operations. Through real-world examples and guided exercises, learners will master the techniques needed to create comprehensive monitoring solutions that capture both infrastructure performance and ML-specific metrics critical for production success.
Inclus
3 vidéos1 lecture1 devoir
In this advanced lesson, learners will master the sophisticated diagnostic and optimization capabilities of AppDynamics for machine learning applications. They will learn to identify performance bottlenecks, conduct root-cause analysis specific to ML systems, and implement optimization strategies that enhance both technical performance and business outcomes. Through real-world troubleshooting scenarios and hands-on optimization exercises, learners will develop the expertise needed to maintain high-performing ML applications in production environments and ensure their systems deliver consistent business value.
Inclus
4 vidéos1 lecture3 devoirs
Instructeur

Offert par
En savoir plus sur Cloud Computing
Statut : Prévisualisation
Statut : PrévisualisationCoursera
Statut : Prévisualisation
Statut : Essai gratuit
Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?




Foire Aux Questions
To access the course materials, assignments and to earn a Certificate, you will need to purchase the Certificate experience when you enroll in a course. You can try a Free Trial instead, or apply for Financial Aid. The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you purchase a Certificate you get access to all course materials, including graded assignments. Upon completing the course, your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile.
Yes. In select learning programs, you can apply for financial aid or a scholarship if you can’t afford the enrollment fee. If fin aid or scholarship is available for your learning program selection, you’ll find a link to apply on the description page.
Plus de questions
Aide financière disponible,
¹ Certains travaux de ce cours sont notés par l'IA. Pour ces travaux, vos Données internes seront utilisées conformément à Notification de confidentialité de Coursera.




