Deploy Resilient AI Microservices with LangChain is a hands-on course that transforms LangChain applications from local prototypes into production-grade systems. You'll decompose monolithic apps into modular services—retrievers, LLM endpoints, and post-processors—connected through gRPC interfaces for scalability and fault isolation. You'll containerize and deploy using Docker and Kubernetes, writing production-ready Dockerfiles with health checks, managing environment variables, and automating rollouts to AWS ECR. Then implement comprehensive observability with OpenTelemetry tracing, Prometheus metrics, and Jaeger/Grafana dashboards to measure latency, throughput, and errors. Finally, you'll master chaos engineering using Chaos Mesh or Gremlin to simulate pod failures, network delays, and resource exhaustion, calculating MTTD and MTTR to measure system resilience.

Profitez d'une croissance illimitée avec un an de Coursera Plus pour 199 $ (régulièrement 399 $). Économisez maintenant.

Deploy Resilient AI Microservices with LangChain
Ce cours fait partie de Spécialisation Build Next-Gen LLM Apps with LangChain & LangGraph


Instructeurs : Starweaver
Inclus avec
Expérience recommandée
Ce que vous apprendrez
Analyze AI workloads to define logical microservice boundaries and implement modular LangChain components communicating via gRPC.
Apply containerization and orchestration using Docker, ECR, K8s to deploy, scale, and monitor LangChain services with health checks and telemetry.
Evaluate and strengthen resilience by implementing OpenTelemetry tracing, Prometheus metrics, and chaos testing to measure and improve recovery.
Compétences que vous acquerrez
- Catégorie : LLM Application
- Catégorie : Docker (Software)
- Catégorie : Kubernetes
- Catégorie : System Monitoring
- Catégorie : API Design
- Catégorie : Large Language Modeling
- Catégorie : Performance Testing
- Catégorie : Containerization
- Catégorie : Microservices
- Catégorie : MLOps (Machine Learning Operations)
- Catégorie : Grafana
- Catégorie : Cloud Deployment
- Catégorie : Application Deployment
- Catégorie : Prometheus (Software)
- Catégorie : Scalability
- Catégorie : LangChain
Détails à connaître

Ajouter à votre profil LinkedIn
décembre 2025
1 devoir
Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées

Élaborez votre expertise du sujet
- Apprenez de nouveaux concepts auprès d'experts du secteur
- Acquérez une compréhension de base d'un sujet ou d'un outil
- Développez des compétences professionnelles avec des projets pratiques
- Obtenez un certificat professionnel partageable

Il y a 3 modules dans ce cours
This module lays the groundwork for transforming LangChain applications into modular, scalable microservices. You’ll analyze AI workloads to identify natural boundaries-retriever, model, post-processor-and design gRPC interfaces for each. Through hands-on demos, you’ll implement your first LangChain microservice, test its endpoints locally, and visualize how traffic flows between components. By the end, you’ll have a clear understanding of how to split, structure, and connect LangChain logic for cloud deployment.
Inclus
4 vidéos2 lectures1 évaluation par les pairs
This module takes your LangChain microservices from local code to production-grade deployment. You’ll package components into Docker images, push them to AWS ECR, and orchestrate them in Kubernetes with health checks and scaling policies. Once deployed, you’ll integrate OpenTelemetry tracing and Prometheus metrics to monitor latency, throughput, and reliability. By the end, you’ll not only have your service running in the cloud-but also fully observable and ready for load.
Inclus
3 vidéos1 lecture1 évaluation par les pairs
This module is all about testing how your system behaves when things go wrong-and proving it can recover. You’ll introduce failure intentionally using Chaos Mesh or Gremlin, simulating pod crashes, network latency, and resource loss. Then, you’ll capture and interpret resilience metrics such as mean time to detect (MTTD) and mean time to recover (MTTR). By the end, you’ll document how your LangChain services withstand disruptions and learn to design architectures that fail gracefully and self-heal.
Inclus
4 vidéos1 lecture1 devoir2 évaluations par les pairs
Obtenez un certificat professionnel
Ajoutez ce titre à votre profil LinkedIn, à votre curriculum vitae ou à votre CV. Partagez-le sur les médias sociaux et dans votre évaluation des performances.
Offert par
En savoir plus sur Software Development
Statut : Essai gratuit
Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?




Foire Aux Questions
To access the course materials, assignments and to earn a Certificate, you will need to purchase the Certificate experience when you enroll in a course. You can try a Free Trial instead, or apply for Financial Aid. The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile.
Yes. In select learning programs, you can apply for financial aid or a scholarship if you can’t afford the enrollment fee. If fin aid or scholarship is available for your learning program selection, you’ll find a link to apply on the description page.
Plus de questions
Aide financière disponible,





