In today’s AI-driven world, optimizing large language models for specific domains while managing cost is a key competitive skill. This course trains AI engineers, ML practitioners, and data scientists to transform baseline generative models into efficient, production-ready solutions. Through hands-on labs using Hugging Face Transformers, PEFT, and Evaluate, you’ll master decoding strategies (temperature, top-k, top-p, beam search), automated evaluation (BLEU, ROUGE, BERTScore, custom metrics), and parameter-efficient fine-tuning (LoRA) that cuts trainable parameters by 99% without losing quality. Real-world projects cover fine-tuning 7B+ models for legal, medical, and financial applications while analyzing GPU and inference costs. The capstone simulates real constraints—limited GPU memory, latency, budget, and compliance—requiring technical, analytical, and executive deliverables. By course end, you’ll confidently optimize and evaluate LLMs, balancing quality, performance, and cost for advanced roles in LLM engineering, MLOps, and AI product development.

Profitez d'une croissance illimitée avec un an de Coursera Plus pour 199 $ (régulièrement 399 $). Économisez maintenant.

Fine-Tune & Optimize Generative AI Models
Ce cours fait partie de Spécialisation Build Next-Gen LLM Apps with LangChain & LangGraph


Instructeurs : Sonali Sen Baidya
Inclus avec
Expérience recommandée
Ce que vous apprendrez
Apply decoding strategies (e.g., temperature, top-k, top-p, beam search) to control model outputs for quality, diversity, and relevance.
Evaluate AI-generated text using automated metrics and frameworks to systematically assess fluency, coherence, and factual accuracy.
Implement parameter-efficient fine-tuning (PEFT) techniques to create domain-adapted foundation models while balancing cost-performance trade-offs.
Compétences que vous acquerrez
- Catégorie : Artificial Intelligence and Machine Learning (AI/ML)
- Catégorie : Analysis
- Catégorie : Model Based Systems Engineering
- Catégorie : Transfer Learning
- Catégorie : AI Personalization
- Catégorie : Model Evaluation
- Catégorie : Model Deployment
- Catégorie : Program Evaluation
- Catégorie : AI Product Strategy
- Catégorie : Large Language Modeling
- Catégorie : Performance Tuning
- Catégorie : MLOps (Machine Learning Operations)
- Catégorie : Generative AI
- Catégorie : Hugging Face
- Catégorie : Applied Machine Learning
- Catégorie : Responsible AI
Détails à connaître

Ajouter à votre profil LinkedIn
décembre 2025
Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées

Élaborez votre expertise du sujet
- Apprenez de nouveaux concepts auprès d'experts du secteur
- Acquérez une compréhension de base d'un sujet ou d'un outil
- Développez des compétences professionnelles avec des projets pratiques
- Obtenez un certificat professionnel partageable

Il y a 3 modules dans ce cours
This module introduces learners to decoding strategies and parameters that control how generative AI models produce text. Learners will explore the mechanics of temperature, top-k, top-p sampling, and beam search, understanding how these parameters influence output diversity, coherence, and relevance. Through hands-on experimentation, learners will gain practical skills in tuning these parameters for different use cases.
Inclus
5 vidéos2 lectures1 évaluation par les pairs
This module equips learners with systematic approaches to evaluate AI-generated text using automated metrics and evaluation frameworks. Learners will explore metrics like BLEU, ROUGE, perplexity, BERTScore, and task-specific evaluation methods, understanding both their capabilities and limitations. The module emphasizes when automated metrics suffice and when human evaluation remains essential.
Inclus
4 vidéos1 lecture1 évaluation par les pairs
This module introduces learners to parameter-efficient fine-tuning (PEFT) techniques that enable domain adaptation of large language models without the computational and memory costs of full fine-tuning. Learners will explore methods like LoRA, prefix tuning, and adapter layers, understanding the cost-performance trade-offs and practical implementation strategies for real-world applications.
Inclus
4 vidéos1 lecture1 devoir2 évaluations par les pairs
Obtenez un certificat professionnel
Ajoutez ce titre à votre profil LinkedIn, à votre curriculum vitae ou à votre CV. Partagez-le sur les médias sociaux et dans votre évaluation des performances.
Offert par
En savoir plus sur Machine Learning
Statut : Essai gratuitSimplilearn
Statut : Essai gratuit
Statut : Essai gratuit
Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?




Foire Aux Questions
To access the course materials, assignments and to earn a Certificate, you will need to purchase the Certificate experience when you enroll in a course. You can try a Free Trial instead, or apply for Financial Aid. The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile.
Yes. In select learning programs, you can apply for financial aid or a scholarship if you can’t afford the enrollment fee. If fin aid or scholarship is available for your learning program selection, you’ll find a link to apply on the description page.
Plus de questions
Aide financière disponible,
¹ Certains travaux de ce cours sont notés par l'IA. Pour ces travaux, vos Données internes seront utilisées conformément à Notification de confidentialité de Coursera.




