Introduction to Machine Learning: Supervised Learning offers a clear, practical introduction to how machines learn from labeled data to make predictions and decisions. You’ll build a strong foundation in regression and classification, starting with linear and logistic regression and progressing to resampling, regularization, and tree-based ensemble methods. Along the way, you’ll learn how to evaluate models, manage bias–variance trade-offs, and balance interpretability with predictive power, all while working hands-on in Python. By the end of the course, you’ll have the skills and intuition needed to confidently apply supervised learning techniques to real-world problems.

Acquérir des compétences de haut niveau avec Coursera Plus pour 199 $ (régulièrement 399 $). Économisez maintenant.

Introduction to Machine Learning: Supervised Learning
Ce cours fait partie de Spécialisation Machine Learning: Theory and Hands-on Practice with Python

Instructeur : Daniel E. Acuna
Inclus avec
Expérience recommandée
Ce que vous apprendrez
Explain and apply the core concepts of supervised learning.
Build, interpret, and evaluate predictive models for regression and classification.
Assess model reliability and improve generalization using validation and regularization techniques.
Apply tree-based and ensemble methods to capture complex relationships in data.
Compétences que vous acquerrez
- Catégorie : Data Preprocessing
- Catégorie : Statistical Modeling
Détails à connaître

Ajouter à votre profil LinkedIn
janvier 2026
6 devoirs
Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées

Élaborez votre expertise du sujet
- Apprenez de nouveaux concepts auprès d'experts du secteur
- Acquérez une compréhension de base d'un sujet ou d'un outil
- Développez des compétences professionnelles avec des projets pratiques
- Obtenez un certificat professionnel partageable

Il y a 5 modules dans ce cours
Welcome to Introduction to Machine Learning: Supervised Learning. In this first module, you will begin your journey into supervised learning by exploring how machines learn from labeled data to make predictions. You will learn to distinguish between supervised and unsupervised learning, and understand the key differences between regression and classification tasks. You will also gain insight into the broader machine learning workflow, including the roles of predictors, response variables, and the importance of training versus testing data. By the end of this module, you will have a solid foundation in the goals and mechanics of supervised learning.
Inclus
12 vidéos7 lectures2 devoirs1 devoir de programmation1 sujet de discussion
In this module, you will expand your understanding of linear models by incorporating multiple predictors, including categorical variables and interaction terms. You will learn how to interpret partial regression coefficients and assess the fit of your models using metrics like R² and RMSE. As you build more complex models, you will also explore the risks of overfitting and the importance of model validation. By the end of this module, you will be equipped to build and evaluate multiple linear regression models with confidence.
Inclus
7 vidéos1 lecture1 devoir1 devoir de programmation
In this module, you will transition from predicting continuous outcomes to modeling categorical ones. You will learn how logistic regression models binary outcomes, like whether a customer will default on a loan, using probabilities and odds, and how to interpret the results. You will also explore k-Nearest Neighbors, a flexible, non-parametric method that classifies observations based on their proximity to others in the dataset. To evaluate your models, you will use tools like confusion matrices, accuracy, and precision/recall, gaining insight into how well your classifiers perform. This module lays the groundwork for tackling real-world classification problems with confidence and clarity.
Inclus
13 vidéos1 lecture1 devoir1 devoir de programmation
In this module, you will learn how to evaluate your models more reliably and improve their generalization to new data. You will explore resampling methods like k-fold cross-validation and the bootstrap, which help estimate test performance without needing a separate test set. You will also be introduced to the regularization techniques Ridge and Lasso that prevent overfitting by constraining model complexity. Using cross-validation, you will learn how to select the optimal regularization strength, balancing predictive accuracy with model simplicity. These tools are essential for building models that perform well not just in theory, but in practice.
Inclus
10 vidéos2 lectures1 devoir1 devoir de programmation
This module introduces you to one of the most intuitive and interpretable machine learning models: decision trees. You will explore how trees split the feature space into regions, how to read their structure, and why they are prone to overfitting if left unchecked. Trees are just the beginning; this module also introduces ensemble techniques that elevate predictive accuracy by combining many models. You will get a first look at methods like bagging, random forests, and boosting, and see how they compare to the models you have already studied. By the end, you will understand when and why tree-based models can outperform simpler approaches, especially in capturing complex, non-linear relationships.
Inclus
8 vidéos1 lecture1 devoir1 devoir de programmation
Obtenez un certificat professionnel
Ajoutez ce titre à votre profil LinkedIn, à votre curriculum vitae ou à votre CV. Partagez-le sur les médias sociaux et dans votre évaluation des performances.
Instructeur

Offert par
En savoir plus sur Machine Learning
Statut : Essai gratuitUniversity of Colorado Boulder
Statut : Essai gratuitAlberta Machine Intelligence Institute
Statut : Essai gratuitUniversity of Colorado Boulder
Statut : Essai gratuitDartmouth College
Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?




Foire Aux Questions
To access the course materials, assignments and to earn a Certificate, you will need to purchase the Certificate experience when you enroll in a course. You can try a Free Trial instead, or apply for Financial Aid. The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile.
Yes. In select learning programs, you can apply for financial aid or a scholarship if you can’t afford the enrollment fee. If fin aid or scholarship is available for your learning program selection, you’ll find a link to apply on the description page.
Plus de questions
Aide financière disponible,




