LangGraph Framework is an intermediate-level course designed for developers and AI engineers who want to build production-ready, stateful AI systems that go beyond simple prompt-response interactions. In today's AI landscape, the most powerful applications aren't single agents working in isolation—they're coordinated systems that maintain context, make intelligent decisions, and collaborate to solve complex problems. This course teaches you to harness LangGraph's graph-based architecture to create AI workflows with persistent memory, conditional logic, and multi-agent coordination. Through hands-on labs, real-world case studies from companies like Klarna, CyberArk, and Replit, and practical projects, you'll learn to build systems that maintain context across interactions, handle failures gracefully, and coordinate multiple specialized agents to create emergent intelligence. Whether you're building customer service automation, research assistants, or complex business workflows, this course equips you with the skills to create AI systems that are not just intelligent, but reliable, maintainable, and production-ready.

Profitez d'une croissance illimitée avec un an de Coursera Plus pour 199 $ (régulièrement 399 $). Économisez maintenant.

Expérience recommandée
Compétences que vous acquerrez
- Catégorie : Agentic Workflows
- Catégorie : MLOps (Machine Learning Operations)
- Catégorie : Software Design Patterns
- Catégorie : Context Management
- Catégorie : Distributed Computing
- Catégorie : AI Orchestration
- Catégorie : LangGraph
- Catégorie : Generative AI Agents
- Catégorie : LLM Application
- Catégorie : LangChain
Détails à connaître

Ajouter à votre profil LinkedIn
décembre 2025
Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées

Il y a 3 modules dans ce cours
In this introductory lesson, learners will explore the fundamental architecture of LangGraph and understand how it differs from traditional agent frameworks. They'll examine the core concepts of graph-based state management and learn why LangGraph provides superior control and reliability for AI applications compared to stateless approaches.
Inclus
4 vidéos3 lectures1 devoir
In this lesson, learners will master the practical implementation of LangGraph's state management system. They'll learn to design persistent workflows with memory, implement conditional logic for dynamic routing, and create robust error handling mechanisms. Through hands-on exercises, learners will build workflows that maintain context across complex multi-step processes and handle real-world edge cases effectively.
Inclus
3 vidéos1 lecture1 devoir
In this final lesson, learners will master the design and implementation of sophisticated multi-agent systems using LangGraph. They'll learn to coordinate autonomous AI agents through event-driven flows, implement inter-agent communication patterns, and create systems where specialized agents collaborate to solve complex problems. The lesson culminates with a comprehensive capstone project that demonstrates production-ready multi-agent coordination.
Inclus
4 vidéos1 lecture3 devoirs
Instructeur

Offert par
En savoir plus sur Machine Learning
Statut : GratuitDeepLearning.AI
Statut : Essai gratuit
Statut : Essai gratuit
Statut : Essai gratuit
Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?




Foire Aux Questions
To access the course materials, assignments and to earn a Certificate, you will need to purchase the Certificate experience when you enroll in a course. You can try a Free Trial instead, or apply for Financial Aid. The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you purchase a Certificate you get access to all course materials, including graded assignments. Upon completing the course, your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile.
Yes. In select learning programs, you can apply for financial aid or a scholarship if you can’t afford the enrollment fee. If fin aid or scholarship is available for your learning program selection, you’ll find a link to apply on the description page.
Plus de questions
Aide financière disponible,
¹ Certains travaux de ce cours sont notés par l'IA. Pour ces travaux, vos Données internes seront utilisées conformément à Notification de confidentialité de Coursera.




