This course teaches you techniques to dramatically speed up model training using the latest features in PyTorch 2.X. Mastering these optimization strategies is essential for professionals building scalable, high-performance AI systems.

Accelerate Model Training with PyTorch 2.X
il reste 6 jours ! Acquérir des compétences de haut niveau avec Coursera Plus pour 199 $ (régulièrement 399 $). Économisez maintenant.

Expérience recommandée
Ce que vous apprendrez
Optimize model training using PyTorch and performance tuning techniques.
Leverage specialized libraries to enhance CPU-based training.
Build efficient data pipelines to improve GPU utilization.
Compétences que vous acquerrez
- Catégorie : Hardware Architecture
- Catégorie : PyTorch (Machine Learning Library)
- Catégorie : LLM Application
- Catégorie : Scalability
- Catégorie : Machine Learning
- Catégorie : Distributed Computing
- Catégorie : Data Pipelines
- Catégorie : MLOps (Machine Learning Operations)
- Catégorie : Computer Architecture
- Catégorie : Model Deployment
- Catégorie : Performance Tuning
- Catégorie : Deep Learning
- Catégorie : AI Workflows
Détails à connaître

Ajouter à votre profil LinkedIn
janvier 2026
11 devoirs
Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées

Il y a 11 modules dans ce cours
In this section, we explore the training process of neural networks, analyze factors contributing to computational burden, and evaluate elements influencing training time.
Inclus
2 vidéos3 lectures1 devoir
In this section, we explore techniques to accelerate model training by modifying the software stack and scaling resources. Key concepts include vertical and horizontal scaling, application and environment layer optimizations, and practical strategies for improving efficiency.
Inclus
1 vidéo3 lectures1 devoir
In this section, we explore the PyTorch 2.0 Compile API to accelerate deep learning model training, focusing on graph mode benefits, API usage, and workflow components for performance optimization.
Inclus
1 vidéo3 lectures1 devoir
In this section, we explore using OpenMP for multithreading and IPEX to optimize PyTorch on Intel CPUs, enhancing performance through specialized libraries.
Inclus
1 vidéo3 lectures1 devoir
In this section, we explore building efficient data pipelines to prevent training bottlenecks. Key concepts include configuring workers, optimizing GPU memory transfer, and ensuring continuous data flow for ML model training.
Inclus
1 vidéo2 lectures1 devoir
In this section, we explore model simplification through pruning and compression techniques to improve efficiency without sacrificing performance, using the Microsoft NNI toolkit for practical implementation.
Inclus
1 vidéo3 lectures1 devoir
In this section, we explore mixed precision strategies to optimize model training efficiency by reducing computational and memory demands without sacrificing accuracy, focusing on PyTorch implementation and hardware utilization.
Inclus
1 vidéo3 lectures1 devoir
In this section, we explore distributed training principles, parallel strategies, and PyTorch implementation to enhance model training efficiency through resource distribution.
Inclus
1 vidéo4 lectures1 devoir
In this section, we explore distributed training on multiple CPUs, focusing on benefits, implementation, and using Intel oneCCL for efficient communication in resource-constrained environments.
Inclus
1 vidéo3 lectures1 devoir
In this section, we explore multi-GPU training strategies, analyze interconnection topologies, and configure NCCL for efficient distributed deep learning operations.
Inclus
1 vidéo4 lectures1 devoir
In this section, we explore distributed training on computing clusters, focusing on Open MPI and NCCL for efficient communication and resource management across multiple machines.
Inclus
1 vidéo4 lectures1 devoir
Instructeur

Offert par
En savoir plus sur Machine Learning
Statut : Essai gratuit
Statut : Essai gratuitDeepLearning.AI
Statut : Essai gratuitDeepLearning.AI
Statut : Essai gratuit
Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?

Felipe M.

Jennifer J.

Larry W.

Chaitanya A.
Foire Aux Questions
Yes, you can preview the first video and view the syllabus before you enroll. You must purchase the course to access content not included in the preview.
If you decide to enroll in the course before the session start date, you will have access to all of the lecture videos and readings for the course. You’ll be able to submit assignments once the session starts.
Once you enroll and your session begins, you will have access to all videos and other resources, including reading items and the course discussion forum. You’ll be able to view and submit practice assessments, and complete required graded assignments to earn a grade and a Course Certificate.
Plus de questions
Aide financière disponible,




