Your high-accuracy ML model performs beautifully on the test set but fails silently in production. This is model drift, the unspoken crisis where models trained on yesterday’s data are unprepared for today's reality. This course, Partition & Monitor AI Models Effectively, is for data scientists and ML engineers who know deployment is just the beginning. You will move beyond model building and into model reliability, creating robust AI systems that stand the test of time.

Profitez d'une croissance illimitée avec un an de Coursera Plus pour 199 $ (régulièrement 399 $). Économisez maintenant.

Partition & Monitor AI Models Effectively
Ce cours fait partie de Spécialisation Agentic AI Performance & Reliability

Instructeur : LearningMate
Inclus avec
Expérience recommandée
Ce que vous apprendrez
Partition data fairly, monitor models for drift using PSI/KL divergence, and build automated retraining pipelines for reliable, production-grade AI.
Compétences que vous acquerrez
- Catégorie : Artificial Intelligence
- Catégorie : Data Integrity
- Catégorie : Data Preprocessing
- Catégorie : MLOps (Machine Learning Operations)
- Catégorie : Probability & Statistics
- Catégorie : Artificial Intelligence and Machine Learning (AI/ML)
- Catégorie : Machine Learning
Détails à connaître

Ajouter à votre profil LinkedIn
Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées

Élaborez votre expertise du sujet
- Apprenez de nouveaux concepts auprès d'experts du secteur
- Acquérez une compréhension de base d'un sujet ou d'un outil
- Développez des compétences professionnelles avec des projets pratiques
- Obtenez un certificat professionnel partageable

Il y a 2 modules dans ce cours
The course begins by immediately establishing the real-world stakes of model reliability. We want to capture the learner's interest by demonstrating that model maintenance is not just a technical task, but a critical business function that prevents costly and high-profile failures. This module addresses the foundational step of any reliable modeling workflow: creating fair and unbiased datasets. Learners will discover why standard random splits can be misleading, particularly in time-series contexts. They will learn to implement robust partitioning strategies that prevent data leakage and ensure that a model's performance during testing is a true indicator of its performance in the real world.
Inclus
2 vidéos1 lecture1 devoir1 laboratoire non noté
This module transitions from pre-deployment validation to post-deployment reality. Learners will explore why a model's performance naturally degrades over time due to "drift." They will learn to quantify this drift using statistical metrics like PSI and KL divergence and design an automated system that monitors model health and triggers retraining before performance issues impact the business.
Inclus
2 vidéos1 lecture2 devoirs
Obtenez un certificat professionnel
Ajoutez ce titre à votre profil LinkedIn, à votre curriculum vitae ou à votre CV. Partagez-le sur les médias sociaux et dans votre évaluation des performances.
Instructeur

Offert par
En savoir plus sur Machine Learning
Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?




Foire Aux Questions
To access the course materials, assignments and to earn a Certificate, you will need to purchase the Certificate experience when you enroll in a course. You can try a Free Trial instead, or apply for Financial Aid. The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile.
Yes. In select learning programs, you can apply for financial aid or a scholarship if you can’t afford the enrollment fee. If fin aid or scholarship is available for your learning program selection, you’ll find a link to apply on the description page.
Plus de questions
Aide financière disponible,
¹ Certains travaux de ce cours sont notés par l'IA. Pour ces travaux, vos Données internes seront utilisées conformément à Notification de confidentialité de Coursera.








