Welcome to Probability, Statistical Inference and Regression Analysis. This course is an introduction to statistical methods and thinking, focusing on modern applications. Some of the concepts will be familiar to those who have taken an elementary statistics course. However, some of the topics presented here extend those ideas into new and emerging applications. These contemporary applications include graphics and data visualization, big data, and newer analytical methods, such as bootstrapping. Acquiring a strong foundation in Regression Analysis is an objective of this course. There is a companion book available that was written by our instructors and would be an excellent companion guide for learners who'd like to further deepen their knowledge of these topics. Proceed to the first module for further details, and to begin learning about Descriptive Statistics.

Acquérir des compétences de haut niveau avec Coursera Plus pour 199 $ (régulièrement 399 $). Économisez maintenant.

Probability, Statistical Inference and Regression Analysis


Instructeurs : Douglas C. Montgomery
Inclus avec
Expérience recommandée
Ce que vous apprendrez
Learners will apply basic statistical methods for data description and visualization, inference, and decision-making.
Compétences que vous acquerrez
- Catégorie : Exploratory Data Analysis
- Catégorie : Analytical Skills
- Catégorie : Estimation
- Catégorie : Logistic Regression
- Catégorie : Probability & Statistics
Détails à connaître

Ajouter à votre profil LinkedIn
janvier 2026
9 devoirs
Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées

Il y a 6 modules dans ce cours
*This 4-course Specialization covers the use of statistical methods in today's business, industrial, and social environments, including several new methods and applications. Prof. Douglas Montgomery reflects: "H.G. Wells foresaw an era when the understanding of basic statistics would be as important for citizenship as the ability to read and write. Modern Statistics for Data-Driven Decision-Making teaches the basics of working with and interpreting data, skills necessary to succeed in Wells’s 'new great complex world' that we now inhabit." *In this course, learners will gain an ability to apply basic statistical methods for data description and visualization, inference, and decision-making. *In the first module, you will enter into Descriptive Statistics, and apply apply basic statistical methods for data description and visualization. We also invite you to orient yourself to the course design, read the instructor bios, and review the learning outcomes. Please begin when ready.
Inclus
6 vidéos5 lectures1 devoir
In Module 2, you will learn the probability foundations that support statistical modeling and data-driven decision-making. You will work with discrete and continuous probability distributions, compute probabilities and distribution summaries, and understand how probability models describe uncertainty in real-world contexts. Before starting, be sure to view the course introduction video and review the learning objectives.
Inclus
11 vidéos3 lectures
In Module 3, we explore the basic concepts of random sampling and the relationship between random sampling and inference. We also construct confidence intervals to estimate means and variances of one or two populations and hypotheses tests and confidence interval estimation on the mean of a population whose variance is known. Be sure to review the learning objectives before beginning work in this module.
Inclus
17 vidéos5 lectures1 devoir
In Module 4, we will review bootstrapping methods that can be used to solve a statistical problem. Be sure you review the learning objectives before beginning work in this module.
Inclus
2 vidéos1 lecture1 devoir
In Module 5, we will review applications of big data in statistical methods and models. Be sure to view videos for this module, complete the readings, and any assignments. Begin by reviewing the learning objectives before beginning work in this module.
Inclus
2 vidéos1 devoir
Module 6 introduces core regression methods, including multiple linear regression, diagnostics, regularization, GLMs, and nonlinear regression. Assessments reinforce conceptual understanding and practical interpretation.
Inclus
24 vidéos5 lectures5 devoirs1 évaluation par les pairs
Instructeurs


Offert par
En savoir plus sur Math and Logic
Statut : Essai gratuit
Statut : Essai gratuitBirla Institute of Technology & Science, Pilani
Statut : Essai gratuitIllinois Tech
Statut : Essai gratuitJohns Hopkins University
Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?





Ouvrez de nouvelles portes avec Coursera Plus
Accès illimité à 10,000+ cours de niveau international, projets pratiques et programmes de certification prêts à l'emploi - tous inclus dans votre abonnement.
Faites progresser votre carrière avec un diplôme en ligne
Obtenez un diplôme auprès d’universités de renommée mondiale - 100 % en ligne
Rejoignez plus de 3 400 entreprises mondiales qui ont choisi Coursera pour les affaires
Améliorez les compétences de vos employés pour exceller dans l’économie numérique
Foire Aux Questions
To access the course materials, assignments and to earn a Certificate, you will need to purchase the Certificate experience when you enroll in a course. You can try a Free Trial instead, or apply for Financial Aid. The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile.
Yes. In select learning programs, you can apply for financial aid or a scholarship if you can’t afford the enrollment fee. If fin aid or scholarship is available for your learning program selection, you’ll find a link to apply on the description page.
Plus de questions
Aide financière disponible,

