Arizona State University
Probability, Statistical Inference and Regression Analysis

Acquérir des compétences de haut niveau avec Coursera Plus pour 199 $ (régulièrement 399 $). Économisez maintenant.

Ce cours n'est pas disponible en Français (France)

Nous sommes actuellement en train de le traduire dans plus de langues.
Arizona State University

Probability, Statistical Inference and Regression Analysis

Douglas C. Montgomery
George Runger

Instructeurs : Douglas C. Montgomery

Inclus avec Coursera Plus

Obtenez un aperçu d'un sujet et apprenez les principes fondamentaux.
niveau Intermédiaire

Expérience recommandée

1 semaine à compléter
à 10 heures par semaine
Planning flexible
Apprenez à votre propre rythme
Obtenez un aperçu d'un sujet et apprenez les principes fondamentaux.
niveau Intermédiaire

Expérience recommandée

1 semaine à compléter
à 10 heures par semaine
Planning flexible
Apprenez à votre propre rythme

Ce que vous apprendrez

  • Learners will apply basic statistical methods for data description and visualization, inference, and decision-making.

Compétences que vous acquerrez

  • Catégorie : Exploratory Data Analysis
  • Catégorie : Analytical Skills
  • Catégorie : Estimation
  • Catégorie : Logistic Regression
  • Catégorie : Probability & Statistics

Détails à connaître

Certificat partageable

Ajouter à votre profil LinkedIn

Récemment mis à jour !

janvier 2026

Évaluations

9 devoirs

Enseigné en Anglais

Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées

 logos de Petrobras, TATA, Danone, Capgemini, P&G et L'Oreal

Il y a 6 modules dans ce cours

*This 4-course Specialization covers the use of statistical methods in today's business, industrial, and social environments, including several new methods and applications. Prof. Douglas Montgomery reflects: "H.G. Wells foresaw an era when the understanding of basic statistics would be as important for citizenship as the ability to read and write. Modern Statistics for Data-Driven Decision-Making teaches the basics of working with and interpreting data, skills necessary to succeed in Wells’s 'new great complex world' that we now inhabit." *In this course, learners will gain an ability to apply basic statistical methods for data description and visualization, inference, and decision-making. *In the first module, you will enter into Descriptive Statistics, and apply apply basic statistical methods for data description and visualization. We also invite you to orient yourself to the course design, read the instructor bios, and review the learning outcomes. Please begin when ready.

Inclus

6 vidéos5 lectures1 devoir

In Module 2, you will learn the probability foundations that support statistical modeling and data-driven decision-making. You will work with discrete and continuous probability distributions, compute probabilities and distribution summaries, and understand how probability models describe uncertainty in real-world contexts. Before starting, be sure to view the course introduction video and review the learning objectives.

Inclus

11 vidéos3 lectures

In Module 3, we explore the basic concepts of random sampling and the relationship between random sampling and inference. We also construct confidence intervals to estimate means and variances of one or two populations and hypotheses tests and confidence interval estimation on the mean of a population whose variance is known. Be sure to review the learning objectives before beginning work in this module.

Inclus

17 vidéos5 lectures1 devoir

In Module 4, we will review bootstrapping methods that can be used to solve a statistical problem. Be sure you review the learning objectives before beginning work in this module.

Inclus

2 vidéos1 lecture1 devoir

In Module 5, we will review applications of big data in statistical methods and models. Be sure to view videos for this module, complete the readings, and any assignments. Begin by reviewing the learning objectives before beginning work in this module.

Inclus

2 vidéos1 devoir

Module 6 introduces core regression methods, including multiple linear regression, diagnostics, regularization, GLMs, and nonlinear regression. Assessments reinforce conceptual understanding and practical interpretation.

Inclus

24 vidéos5 lectures5 devoirs1 évaluation par les pairs

Instructeurs

Douglas C. Montgomery
Arizona State University
6 Cours26 942 apprenants
George Runger
Arizona State University
3 Cours4 apprenants

Offert par

En savoir plus sur Math and Logic

Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?

Felipe M.
Étudiant(e) depuis 2018
’Pouvoir suivre des cours à mon rythme à été une expérience extraordinaire. Je peux apprendre chaque fois que mon emploi du temps me le permet et en fonction de mon humeur.’
Jennifer J.
Étudiant(e) depuis 2020
’J'ai directement appliqué les concepts et les compétences que j'ai appris de mes cours à un nouveau projet passionnant au travail.’
Larry W.
Étudiant(e) depuis 2021
’Lorsque j'ai besoin de cours sur des sujets que mon université ne propose pas, Coursera est l'un des meilleurs endroits où se rendre.’
Chaitanya A.
’Apprendre, ce n'est pas seulement s'améliorer dans son travail : c'est bien plus que cela. Coursera me permet d'apprendre sans limites.’
Coursera Plus

Ouvrez de nouvelles portes avec Coursera Plus

Accès illimité à 10,000+ cours de niveau international, projets pratiques et programmes de certification prêts à l'emploi - tous inclus dans votre abonnement.

Faites progresser votre carrière avec un diplôme en ligne

Obtenez un diplôme auprès d’universités de renommée mondiale - 100 % en ligne

Rejoignez plus de 3 400 entreprises mondiales qui ont choisi Coursera pour les affaires

Améliorez les compétences de vos employés pour exceller dans l’économie numérique

Foire Aux Questions