Computer science legend Donald Knuth once said “I don’t understand things unless I try to program them.” We also believe that the best way to learn an algorithm is to program it. However, many excellent books and online courses on algorithms, that excel in introducing algorithmic ideas, have not yet succeeded in teaching you how to implement algorithms, the crucial computer science skill that you have to master at your next job interview. We tried to fill this gap by forming a diverse team of instructors that includes world-leading experts in theoretical and applied algorithms at UCSD (Daniel Kane, Alexander Kulikov, and Pavel Pevzner) and a former software engineer at Google (Neil Rhodes). This unique combination of skills makes this Specialization different from other excellent MOOCs on algorithms that are all developed by theoretical computer scientists. While these MOOCs focus on theory, our Specialization is a mix of algorithmic theory/practice/applications with software engineering. You will learn algorithms by implementing nearly 100 coding problems in a programming language of your choice. To the best of knowledge, no other online course in Algorithms comes close to offering you a wealth of programming challenges (and puzzles!) that you may face at your next job interview. We invested over 3000 hours into designing our challenges as an alternative to multiple choice questions that you usually find in MOOCs.
Projet d'apprentissage appliqué
The specialization contains two real-world projects: Big Networks and Genome Assembly. You will analyze both road networks and social networks and will learn how to compute the shortest route between New York and San Francisco 1000 times faster than the shortest path algorithms you learn in the standard Algorithms 101 course! Afterwards, you will learn how to assemble genomes from millions of short fragments of DNA and how assembly algorithms fuel recent developments in personalized medicine.